您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 173-177.doi: 10.6040/j.issn.1671-9352.0.2023.535

• • 上一篇    下一篇

Bernoulli噪声泛函上一类位势算子的谱性质

丁瑞鹤,王才士*,张丽霞   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2025-12-10
  • 通讯作者: 王才士(1962— ),男,教授,博士生导师,博士,研究方向为随机分析. E-mail:wangcs@nwnu.edu.cn
  • 作者简介:丁瑞鹤(1993— ),女,硕士研究生,研究方向为数理统计学. E-mail:dingrhnwnu@163.com*通信作者:王才士(1962— ),男,教授,博士生导师,博士,研究方向为随机分析. E-mail:wangcs@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(1226108)

Spectral properties of some potential operators on Bernoulli noise functionals

DING Ruihe, WANG Caishi*, ZHANG Lixia   

  1. School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2025-12-10

摘要: 考虑一类作用于Bernoulli噪声泛函的自伴算子Nu,此类算子可解释为某种位势算子。通过Full-Wiener积分变换,显式地求出一个与Nu酉等价的乘算子,由此进一步得到Nu的谱的显式表示;证明在适当条件下Nu仅有纯点谱作为应用,考虑以Nu为Hamiltonian的量子系统,证明该系统是稳定的。

关键词: Bernoulli噪声泛函, 位势算子, 谱性质, 权函数

Abstract: This paper considers some self-adjoint operators Nu in Bernoulli noise functionals that essentially belong to the category of potential operators. By the Full-Wiener integral transform, the unitarily equivalent multiplication operators are explicitly obtained, and thus the explicit expressions of their spectrums are further obtained. Under some mild conditions, the fact that these operators have only pure point spectra is proved. Finally, in application, the proof that the quantum system with such an operator as the Hamiltonian is stable is proved.

Key words: Bernoulli noise functional, potential operator, spectral property, weight function

中图分类号: 

  • O211.4
[1] PARTHASARATHY K R. An introduction to quantum stochastic calculus[M]. Basel: Birkhäuser, 1992.
[2] WANG Caishi, CHAI Huifang, LU Yanchun. Discrete-time quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2010, 51(5):053528.
[3] WANG Caishi, TANG Yuling, REN Suling. Weighted number operators on Bernoulli functionals and quantum exclusion semigroups[J]. Journal of Mathematical Physics, 2019, 60(11):113506.
[4] WANG Caishi, YE Xiaojuan. Quantum walk in terms of quantum Bernoulli noises[J]. Quantum Information Processing, 2016, 15(5):1897-1908.
[5] WANG Ce. The uniform measure for quantum walk on hypercube: a quantum Bernoulli noises approach[J]. Journal of Mathematical Physics, 2022, 63(11):113501.
[6] WANG Ce. Abstract model of continuous-time quantum walk based on Bernoulli functionals and perfect state transfer[J]. International Journal of Quantum Information, 2023, 21(3):2350015.
[7] PRIVAULT N. Stochastic analysis of Bernoulli processes[J]. Probability Surveys, 2008, 5:435-483.
[8] BORTHWICK D. Spectral theory[M]. Cham: Springer, 2020.
[9] BRIAN C H. Quantum theory for mathematicians[M]. New York: Springer, 2013.
[1] 吴奇,杨沿奇,陶双平. 双线性θ-型C-Z算子在双权变指数Herz空间上的估计[J]. 《山东大学学报(理学版)》, 2025, 60(8): 95-105.
[2] 李春平,桑彦彬. 具有变号权函数的分数阶p-q-Laplacian方程组的多重解[J]. 《山东大学学报(理学版)》, 2022, 57(8): 95-102.
[3] 李永明,聂彩玲,刘超,郭建华. 负超可加阵列下非参数回归函数估计的相合性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 69-74.
[4] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83-88.
[5] 赵凯,孙晓华,杜宏彬. Littlewood-Paley算子在加权Herz空间的弱有界性[J]. J4, 2012, 47(4): 62-65.
[6] 杨必成. 关于一个非齐次核的Hilbert型积分不等式及其推广[J]. J4, 2011, 46(2): 123-126.
[7] 黄臻晓. 一个逆向Hilbert型积分不等式的最佳推广[J]. J4, 2010, 45(2): 107-110.
[8] 杨必成. 一个零齐次核的Hilbert型积分不等式[J]. J4, 2010, 45(2): 103-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[2] 王琦,赵红銮 . Split完全图的最小直径定向[J]. J4, 2006, 41(6): 84 -86 .
[3] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16 -23 .
[4] 伍代勇, 张海. 具有Allee效应和时滞的单种群离散模型的稳定性和分支[J]. 山东大学学报(理学版), 2014, 49(07): 88 -94 .
[5] 卢磊,陈德华,高宝玉,王东平,曹百川 . 利用絮凝剂提高聚合物驱采出液脱水效[J]. J4, 2006, 41(6): 114 -118 .
[6] 王 兵 . 拟无爪图的性质[J]. J4, 2007, 42(10): 111 -113 .
[7] 张晓敏. 超R*-幂单半群的圈积结构[J]. J4, 2009, 44(9): 66 -69 .
[8] 郭霄怡 徐明瑜. 广义Oldroyd-B流体的非定常Couette流的精确解[J]. J4, 2009, 44(10): 60 -63 .
[9] 李爱香,鲁在君 . 通过原子转移自由基聚合合成含二苯基乙烯侧基的聚苯乙烯[J]. J4, 2007, 42(1): 59 -63 .
[10] 刘乃文 刘方爱. 一种基于RP(k)的资源感知模型研究[J]. J4, 2009, 44(11): 57 -62 .