《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 173-177.doi: 10.6040/j.issn.1671-9352.0.2023.535
丁瑞鹤,王才士*,张丽霞
DING Ruihe, WANG Caishi*, ZHANG Lixia
摘要: 考虑一类作用于Bernoulli噪声泛函的自伴算子Nu,此类算子可解释为某种位势算子。通过Full-Wiener积分变换,显式地求出一个与Nu酉等价的乘算子,由此进一步得到Nu的谱的显式表示;证明在适当条件下Nu仅有纯点谱。作为应用,考虑以Nu为Hamiltonian的量子系统,证明该系统是稳定的。
中图分类号:
| [1] PARTHASARATHY K R. An introduction to quantum stochastic calculus[M]. Basel: Birkhäuser, 1992. [2] WANG Caishi, CHAI Huifang, LU Yanchun. Discrete-time quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2010, 51(5):053528. [3] WANG Caishi, TANG Yuling, REN Suling. Weighted number operators on Bernoulli functionals and quantum exclusion semigroups[J]. Journal of Mathematical Physics, 2019, 60(11):113506. [4] WANG Caishi, YE Xiaojuan. Quantum walk in terms of quantum Bernoulli noises[J]. Quantum Information Processing, 2016, 15(5):1897-1908. [5] WANG Ce. The uniform measure for quantum walk on hypercube: a quantum Bernoulli noises approach[J]. Journal of Mathematical Physics, 2022, 63(11):113501. [6] WANG Ce. Abstract model of continuous-time quantum walk based on Bernoulli functionals and perfect state transfer[J]. International Journal of Quantum Information, 2023, 21(3):2350015. [7] PRIVAULT N. Stochastic analysis of Bernoulli processes[J]. Probability Surveys, 2008, 5:435-483. [8] BORTHWICK D. Spectral theory[M]. Cham: Springer, 2020. [9] BRIAN C H. Quantum theory for mathematicians[M]. New York: Springer, 2013. |
| [1] | 吴奇,杨沿奇,陶双平. 双线性θ-型C-Z算子在双权变指数Herz空间上的估计[J]. 《山东大学学报(理学版)》, 2025, 60(8): 95-105. |
| [2] | 李春平,桑彦彬. 具有变号权函数的分数阶p-q-Laplacian方程组的多重解[J]. 《山东大学学报(理学版)》, 2022, 57(8): 95-102. |
| [3] | 李永明,聂彩玲,刘超,郭建华. 负超可加阵列下非参数回归函数估计的相合性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 69-74. |
| [4] | 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83-88. |
| [5] | 赵凯,孙晓华,杜宏彬. Littlewood-Paley算子在加权Herz空间的弱有界性[J]. J4, 2012, 47(4): 62-65. |
| [6] | 杨必成. 关于一个非齐次核的Hilbert型积分不等式及其推广[J]. J4, 2011, 46(2): 123-126. |
| [7] | 黄臻晓. 一个逆向Hilbert型积分不等式的最佳推广[J]. J4, 2010, 45(2): 107-110. |
| [8] | 杨必成. 一个零齐次核的Hilbert型积分不等式[J]. J4, 2010, 45(2): 103-106. |
|