《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (9): 133-136.doi: 10.6040/j.issn.1671-9352.0.2024.166
• • 上一篇
沈旭辉
SHEN Xuhui
摘要: 研究一类四阶反应扩散方程解的爆破现象,通过推导适用于高维空间的Sobolev不等式,构造合适的辅助函数和利用微分不等式技巧,给出方程解的爆破时刻下界。
中图分类号:
[1] LEVINE H A. Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: the method of unbounded fourier coefficients[J]. Mathematische Annalen, 1975, 214(3):205-220. [2] PAYNE L E, SCHAEFER P W. Lower bounds for blow-up time in parabolic problems under Neumann conditions[J]. Applicable Analysis, 2006, 85(10):1301-1311. [3] 欧阳柏平,肖胜中. 非线性边界条件下非局部多孔介质抛物方程解的爆破现象[J]. 应用数学学报,2023,46(3):478-492. OUYANG Baiping, XIAO Shengzhong. blow-up phenomena of solutions to a nonlocal porous medium parabolic equation with space-dependent coefficients and inner absorption terms under nonlinear boundary conditions[J]. Acta Mathematicae Applicatae Sinica, 2023, 46(3):478-492. [4] HAN Jiangbo, XU Runzhang, YANG Chao. Continuous dependence on initial data and high energy blowup time estimate for porous elastic system[J]. Communications in Analysis and Mechanics, 2023, 15(2):214-244. [5] WINKLER M. Global solutions in higher dimensions to a fourth-order parabolic equation modeling epitaxial thin-film growth[J]. Zeitschrift für Angewandte Mathematik und Physik, 2011, 62(4):575-608. [6] HAN Yuzhu. blow-up phenomena for a fourth-order parabolic equation with a general nonlinearity[J]. Journal of Dynamical and Control Systems, 2021, 27:261-270. [7] ZHAO Lijing, LI Fushan. Sufficient conditions and bounds estimate of blow-up time for a fourth order parabolic equation[J]. Qualitative Theory of Dynamical Systems, 2022, 21(3):1-17. [8] PHILIPPIN G A. Lower bounds for blow-up time in a class of nonlinear wave equations[J]. Zeitschrift für Angewandte Mathematik und Physik, 2015, 66(1):129-134. [9] HENROT A. Extremum problems for eigenvalues of elliptic operators[M]. Basel: Birkhäuser Verlag, 2006. |
[1] | 欧阳柏平. 一类导数型非线性项的弱耦合半线性Moore-Gibson-Thompson系统解的爆破[J]. 《山东大学学报(理学版)》, 2022, 57(9): 101-110. |
[2] | 段对花,高承华,王晶晶. 一类k-Hessian方程爆破解的存在性和不存在性[J]. 《山东大学学报(理学版)》, 2022, 57(3): 62-67. |
[3] | 孟希望,王娟. de Sitter时空中波动方程初值问题解的爆破[J]. 《山东大学学报(理学版)》, 2020, 55(6): 64-75. |
[4] | 董莉. 两类非线性波动方程解的爆破时间的下确界[J]. 山东大学学报(理学版), 2017, 52(4): 56-60. |
[5] | 刘洋,达朝究,李富明. Nehari流形在一类半线性抛物方程爆破中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 123-127. |
[6] | 吕红杰, 刘静静, 齐静, 刘硕. 弱耗散μ-Hunter-Saxton方程的爆破[J]. 山东大学学报(理学版), 2015, 50(05): 55-59. |
[7] | 林春进1,徐国静2. 高维Kaniadakis-Quarati 方程的有限时间爆破[J]. 山东大学学报(理学版), 2014, 49(06): 79-84. |
[8] | 宋丹丹,原保全*. 可压缩磁流体方程组的显式爆破解[J]. J4, 2012, 47(2): 26-30. |
[9] | 代丽美. 完全非线性一致椭圆方程的边界爆破问题[J]. J4, 2011, 46(6): 34-36. |
[10] | 阎小丽,原保全*. 欧拉方程的显式爆破解[J]. J4, 2011, 46(12): 104-107. |
[11] | 李凤萍. 三维广义磁流体方程组解的爆破准则[J]. J4, 2010, 45(4): 90-94. |
[12] | 陆求赐1,曾有栋2. 非局部波动方程组解的半无界问题[J]. J4, 2010, 45(10): 104-108. |
|