您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (10): 23-41.doi: 10.6040/j.issn.1671-9352.0.2025.116

• • 上一篇    

SERS协同机器学习在生物医药检测中的应用

陈云帆1,王也晨1,王龙2*,安琪1*,冯泽国2   

  1. 1.中国地质大学(北京)材料科学与工程学院, 北京 100083;2.中国人民解放军总医院第一医学中心疼痛科, 北京 100853
  • 发布日期:2025-10-17
  • 通讯作者: 王龙(1988— ),男,副主任医师,博士,研究方向为慢性疼痛的机制研究. E-mail:Flynn.xu@163.com;安琪(1983—),女,教授,博士,研究方向为自组装功能材料. E-mail:an@cugb.edu.cn
  • 作者简介:陈云帆(2000— ),男,博士研究生,研究方向为表面增强拉曼光谱. E-mail:3003230001@email.cugb.edu.cn*通信作者:王龙(1988— ),男,副主任医师,博士,研究方向为慢性疼痛的机制研究. E-mail:Flynn.xu@163.com安琪(1983—),女,教授,博士,研究方向为自组装功能材料. E-mail:an@cugb.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(22272152)

Application of SERS collaborative machine learning in biomedical detection

CHEN Yunfan1, WANG Yechen1, WANG Long2*, AN Qi1*, FENG Zeguo2   

  1. 1. School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China;
    2. Department of Pain Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
  • Published:2025-10-17

摘要: 表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)能够捕获分子的化学键振动特征,实现高灵敏度和特异性的无标记检测,在检测生物样品方面具有显著的优势和应用潜力,但面临数据特征复杂、光谱波动性、重复性、特征峰重叠等挑战。机器学习(machine learning, ML)通过算法和模型使计算机从数据中自动学习并进行预测或决策,在解析生物样品的复杂SERS光谱,推进其临床应用中展现出广阔前景。本文综述ML算法如何提升SERS性能,介绍用于ML的SERS数据的预处理方法、探讨ML处理SERS数据的功能类型和基本流程,并重点介绍其在分类和定量分析以及疾病诊断中的应用。此外,本文还讨论ML辅助SERS在分子结构预测、拉曼光谱数据库构建及DNA与RNA区分方面的潜力。最后,对ML集成SERS的挑战和未来发展方向进行展望。

关键词: 表面增强拉曼散射, 机器学习, 生物医药, 特征提取, 疾病诊断

Abstract: Surface-enhanced Raman spectroscopy(SERS)enables highly sensitive and specific label-free detection by capturing the vibrational signatures of molecular chemical bonds. It offers significant advantages and broad application potential in the analysis of biological samples. However, its clinical translation remains limited due to challenges such as spectral complexity, variability, limited reproducibility, and overlapping characteristic peaks. Machine learning(ML), which allows computational models to learn patterns from data and make informed predictions or decisions, has shown great promise in deciphering complex SERS spectra and advancing their biomedical applications. This review highlights recent advances in the integration of ML with SERS, detailing how ML algorithms enhanced analytical performance. It also outlines common data preprocessing techniques for SERS, describes core ML workflows, and examines their roles in classification, quantitative analysis, and disease diagnosis. Furthermore, the review explores emerging applications such as molecular structure prediction, Raman spectral database development, and discrimination between DNA and RNA. Finally, the current challenges and future directions of ML-assisted SERS are discussed, with an emphasis on improving robustness, interpretability, and clinical applicability.

Key words: SERS, machine learning, biomedicine, feature extraction, disease diagnosis

中图分类号: 

  • O657.37
[1] CHEN Y F, AN Q, TENG K X, et al. Application of SERS in in-vitro biomedical detection[J]. Chemistry-An Asian Journal, 2023, 18(4):e202201194.
[2] YI J, YOU E M, HU R, et al. Surface-enhanced Raman spectroscopy: a half-century historical perspective[J]. Chemical Society Reviews, 2025, 54(3):1453-1551.
[3] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2):163-166.
[4] JEANMAIRE D L, VAN DUYNE R P. Surface Raman spectroelectrochemistry part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1):1-20.
[5] ALBRECHT M G, CREIGHTON J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. Journal of the American Chemical Society, 1977, 99(15):5215-5217.
[6] LEE P C, MEISEL D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 1982, 86(17):3391-3395.
[7] KNEIPP K, WANG Y, KNEIPP H, et al. Single molecule detection using surface-enhanced Raman scattering(SERS)[J]. Physical Review Letters, 1997, 78(9):1667-1670.
[8] NIE S, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303):1102-1106.
[9] BENZ F, CHIKKARADDY R, SALMON A, et al. SERS of individual nanoparticles on a mirror: size does matter, but so does shape[J]. The Journal of Physical Chemistry Letters, 2016, 7(12):2264-2269.
[10] TIAN Y, FANG G, WU F X, et al. Raman spectroscopic technologies for chiral discrimination: current status and new frontiers[J]. Coordination Chemistry Reviews, 2025, 526:216375.
[11] LIN S, DONG M Y, LI C, et al. Machine learning-assisted ultrasensitive SERS immunoassays across wide concentration ranges toward clinical ovarian cancer diagnosis[J]. Advanced Functional Materials, 2025, e09813.
[12] HAN X X, JI W, ZHAO B, et al. Semiconductor-enhanced Raman scattering: active nanomaterials and applications[J]. Nanoscale, 2017, 9(15):4847-4861.
[13] HAN X X, KÖHLER C, KOZUCH J, et al. Potential-dependent surface-enhanced resonance Raman spectroscopy at nanostructured TiO2: a case study on cytochrome b5[J]. Small, 2013, 9(24):4175-4181.
[14] LAI H S, XU F G, ZHANG Y, et al. Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications[J]. Journal of Materials Chemistry B, 2018, 6(24):4008-4028.
[15] LEE Y, KIM H, LEE J, et al. Enhanced Raman scattering of rhodamine 6G films on two-dimensional transition metal dichalcogenides correlated to photoinduced charge transfer[J]. Chemistry of Materials, 2016, 28(1):180-187.
[16] YILMAZ M, BABUR E, OZDEMIR M, et al. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy[J]. Nature Materials, 2017, 16(9):918-924.
[17] WANG X T, SHI W X, WANG S X, et al. Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity[J]. Journal of the American Chemical Society, 2019, 141(14):5856-5862.
[18] DING S Y, YOU E M, TIAN Z Q, et al. Electromagnetic theories of surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2017, 46(13):4042-4076.
[19] PARK W H, KIM Z H. Charge transfer enhancement in the SERS of a single molecule[J]. Nano Letters, 2010, 10(10):4040-4048.
[20] VALLEY N, GREENELTCH N, VAN DUYNE R P, et al. A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy(SERS): theory and experiment[J]. The Journal of Physical Chemistry Letters, 2013, 4(16):2599-2604.
[21] KNEIPP J, SEIFERT S, GÄRBER F. SERS microscopy as a tool for comprehensive biochemical characterization in complex samples[J]. Chemical Society Reviews, 2024, 53(15):7641-7656.
[22] CUTSHAW G, UTHAMAN S, HASSAN N, et al. The emerging role of Raman spectroscopy as an omics approach for metabolic profiling and biomarker detection toward precision medicine[J]. Chemical Reviews, 2023, 123(13):8297-8346.
[23] ZHOU H, XU L G, REN Z H, et al. Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics[J]. Nanoscale Advances, 2023, 5(3):538-570.
[24] CAO D W, LIN H C, LIU Z Y, et al. Serum-based surface-enhanced Raman spectroscopy combined with PCA-RCKNCN for rapid and accurate identification of lung cancer[J]. Analytica Chimica Acta, 2022, 1236:340574.
[25] LOO J, CAI C X, CHOONG J, et al. Deep learning-based classification and segmentation of retinal cavitations on optical coherence tomography images of macular telangiectasia type 2[J]. British Journal of Ophthalmology, 2022, 106(3):396-402.
[26] CHEN P C, LIU Y, PENG L. How to develop machine learning models for healthcare[J]. Nature Materials, 2019, 18(5):410-414.
[27] LI H M, WANG Q, TANG J, et al. Establishment of a reliable scheme for obtaining highly stable SERS signal of biological serum[J]. Biosensors and Bioelectronics, 2021, 189:113315.
[28] WANG Y P, YU C W, JI H Y, et al. Label-free therapeutic drug monitoring in human serum by the 3-step surface enhanced Raman spectroscopy and multivariate analysis[J]. Chemical Engineering Journal, 2023, 452:139588.
[29] LU Y, WANG J Y, BI X Y, et al. Non-invasive and rapid diagnosis of low-grade bladder cancer via SERSomes of urine[J]. Nanoscale, 2025, 17(12):7303-7312.
[30] DONG Y L, HU J Y, JIN J L, et al. Advances in machine learning-assisted SERS sensing towards food safety and biomedical analysis[J]. TrAC Trends in Analytical Chemistry, 2024, 180:117974.
[31] DIJKSTRA R J, SCHEENEN W J J M, DAM N, et al. Monitoring neurotransmitter release using surface-enhanced Raman spectroscopy[J]. Journal of Neuroscience Methods, 2007, 159(1):43-50.
[32] SHEN J H, LI M, LI Z F, et al. Single convolutional neural network model for multiple preprocessing of Raman spectra[J]. Vibrational Spectroscopy, 2022, 121:103391.
[33] THRIFT W J, RAGAN R. Quantification of analyte concentration in the single molecule regime using convolutional neural networks[J]. Analytical Chemistry, 2019, 91(21):13337-13342.
[34] RALBOVSKY N M, LEDNEV I K. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning[J]. Chemical Society Reviews, 2020, 49(20):7428-7453.
[35] YANG L, SHAMI A. On hyperparameter optimization of machine learning algorithms: theory and practice[J]. Neurocomputing, 2020, 415:295-316.
[36] SHIN H, OH S, HONG S, et al. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes[J]. ACS Nano, 2020, 14(5):5435-5444.
[37] FENG J Z, WANG Y, PENG J, et al. Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries[J]. Journal of Critical Care, 2019, 54:110-116.
[38] DING Y, SUN Y, LIU C, et al. SERS-based biosensors combined with machine learning for medical application[J]. ChemistryOpen, 2023, 12(1):e202200192
[39] YADAV A, NAIK R, GUPTA E, et al. Single-shot, receptor-free, rapid detection and classification of five respiratory viruses by machine learning integrated SERS sensing platform[J]. Biosensors and Bioelectronics, 2025, 279:117394.
[40] HAN S, PARK J, MOON S, et al. Label-free and liquid state SERS detection of multi-scaled bioanalytes via light-induced pinpoint colloidal assembly[J]. Biosensors and Bioelectronics, 2024, 264:116663.
[41] JANCI T, VALINGER D, GAJDOS KLJUSURIC J, et al. Determination of histamine in fish by surface enhanced Raman spectroscopy using silver colloid SERS substrates[J]. Food Chemistry, 2017, 224:48-54.
[42] ZHU J J, JIANG X, RONG Y W, et al. Label-free detection of trace level zearalenone in corn oil by surface-enhanced Raman spectroscopy(SERS)coupled with deep learning models[J]. Food Chemistry, 2023, 414:135705.
[43] LEONG S X, TAN E X, HAN X M, et al. Surface-enhanced Raman scattering-based surface chemotaxonomy: combining bacteria extracellular matrices and machine learning for rapid and universal species identification[J]. ACS Nano, 2023, 17(22):23132-23143.
[44] ZHAO J L, CHEN J F, TANG J, et al. Artificial intelligence assisted label-free surface-enhanced Raman scattering detection of early-stage cancer-derived exosomes based on g-C3N4/Ag hybrid substrate prepared by electro-synthesis[J]. Chemical Engineering Journal, 2024, 498:155526.
[45] MATSCHULAT A, DRESCHER D, KNEIPP J. Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems[J]. ACS Nano, 2010, 4(6):3259-3269.
[46] LIN L L, ALVAREZ-PUEBLA R, LIZ-MARZÁN L M, et al. Surface-enhanced Raman spectroscopy for biomedical applications: recent advances and future challenges[J]. ACS Applied Materials & Interfaces, 2025, 17(11):16287-16379.
[47] SHIN H, JEONG H, PARK J, et al. Correlation between cancerous exosomes and protein markers based on surface-enhanced Raman spectroscopy(SERS)and principal component analysis(PCA)[J]. ACS Sensors, 2018, 3(12):2637-2643.
[48] DING Z X, WANG C, SONG X, et al. Strong π-metal interaction enables liquid interfacial nanoarray-molecule co-assembly for Raman sensing of ultratrace fentanyl doped in heroin, ketamine, morphine, and real urine[J]. ACS Applied Materials & Interfaces, 2023, 15(9):12570-12579.
[49] LIM J Y, NAM J S, SHIN H, et al. Identification of newly emerging influenza viruses by detecting the virally infected cells based on surface enhanced Raman spectroscopy and principal component analysis[J]. Analytical Chemistry, 2019, 91(9):5677-5684.
[50] MARTIN F L, KELLY J G, LLABJANI V, et al. Distinguishing cell types or populations based on the computational analysis of their infrared spectra[J]. Nature Protocols, 2010, 5(11):1748-1760.
[51] LEONG S X, KOH L K, KOH C S L, et al. In situ differentiation of multiplex noncovalent interactions using SERS and chemometrics[J]. ACS Applied Materials & Interfaces, 2020, 12(29):33421-33427.
[52] NGUYEN C Q, THRIFT W J, BHATTACHARJEE A, et al. Longitudinal monitoring of biofilm formation via robust surface-enhanced Raman scattering quantification of pseudomonas aeruginosa-produced metabolites[J]. ACS Applied Materials & Interfaces, 2018, 10(15):12364-12373.
[53] MEUNIER C J, MCCARTY G S, SOMBERS L A. Drift subtraction for fast-scan cyclic voltammetry using double-waveform partial-least-squares regression[J]. Analytical Chemistry, 2019, 91(11):7319-7327.
[54] ACOSTA C M, OGOSHI E, SOUZA J A, et al. Machine learning study of the magnetic ordering in 2D materials[J]. ACS Applied Materials & Interfaces, 2022, 14(7):9418-9432.
[55] LEONG S X, KOH C S L, SIM H Y F, et al. Enantiospecific molecular fingerprinting using potential-modulated surface-enhanced Raman scattering to achieve label-free chiral differentiation[J]. ACS Nano, 2021, 15(1):1817-1825.
[56] ALOBAIDI M, MALIK K M, SABRA S. Linked open data-based framework for automatic biomedical ontology generation[J]. BMC Bioinformatics, 2018, 19(1):319.
[57] DIAO X K, QI G H, LI X L, et al. Label-free exosomal SERS detection assisted by machine learning for accurately discriminating cell cycle stages and revealing the molecular mechanisms during the mitotic process[J]. Analytical Chemistry, 2025, 97(9):5093-5101.
[58] KIM W H, LEE S, JEON M J, et al. Rapid and differential diagnosis of sepsis stages using an advanced 3D plasmonic bimetallic alloy nanoarchitecture-based SERS biosensor combined with machine learning for multiple analyte identification[J]. Advanced Science, 2025, 2414688.
[59] SHU W K, ZHANG M J, ZHANG C Q, et al. An alloy platform of dual-fingerprints for high-performance stroke screening[J]. Advanced Functional Materials, 2023, 33(5):2210267.
[60] DAS S, SAXENA K, TINGUELY J C, et al. SERS nanowire chip and machine learning-enabled classification of wild-type and antibiotic-resistant bacteria at species and strain levels[J]. ACS Applied Materials & Interfaces, 2023, 15(20):24047-24058.
[61] TAMTAJI M, GUO X Y, TYAGI A, et al. Machine learning-aided design of gold core-shell nanocatalysts toward enhanced and selective photooxygenation[J]. ACS Applied Materials & Interfaces, 2022, 14(41):46471-46480.
[62] CHEN Y F, LI H T, SHI J, et al. Diagnosis of early opioids addiction by label-free serum SERS fingerprints with machine learning[J]. Chemical Engineering Journal, 2025, 505:159412.
[63] JIANG H Y, UNIVERSITY C S, ZHANG Y B, et al. Comprehensive serum analysis via an AI-assisted magnetically driven SERS platform for the diagnosis and etiological differentiation of childhood epilepsy[J]. ACS Applied Materials & Interfaces, 2025, 17(8):11731-11741.
[64] LEONG S X, LEONG Y X, TAN E X, et al. Noninvasive and point-of-care surface-enhanced Raman scattering(SERS)-based breathalyzer for mass screening of coronavirus disease 2019(COVID-19)under 5 min[J]. ACS Nano, 2022, 16(2):2629-2639.
[65] JONES T, ZHOU D, LIU J, et al. Quantitative multiplexing of uric acid and creatinine using polydisperse plasmonic nanoparticles enabled by electrochemical-SERS and machine learning[J]. Journal of Materials Chemistry B, 2024, 12(41):10563-10572.
[66] GARG A, HAWKS S, PAN J, et al. Machine learning-driven SERS fingerprinting of disintegrated viral components for rapid detection of SARS-CoV-2 in environmental dust[J]. Biosensors and Bioelectronics, 2024, 247:115946.
[67] WAN Y, WEI Q, SUN H, et al. Machine learning assisted biomimetic flexible SERS sensor from seashells for pesticide classification and concentration prediction[J]. Chemical Engineering Journal, 2025, 507:160813.
[68] KHONDAKAR K R, MAZUMDAR H, DAS S, et al. Machine learning(ML)-assisted surface-enhanced Raman spectroscopy(SERS)technologies for sustainable health[J]. Advances in Colloid and Interface Science, 2025, 344:103594.
[69] TAN E X, CHEN J R T, PANG D W C, et al. Transfer learning-assisted SERS: predicting molecular identity and concentration in mixtures using pure compound spectra[J]. Angewandte Chemie International Edition, 2025, e202508717.
[70] ZHENG P, WU L T, LEE M K H, et al. Deep learning-powered colloidal digital SERS for precise monitoring of cell culture media[J]. Nano Letters, 2025, 25(15):6284-6291.
[71] SUN X R, XUAN L R, LIU C L, et al. Quantitative analysis of deltamethrin residues in water using surface-enhanced Raman spectroscopy[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2025, 343:126545.
[72] TANG J W, YUAN Q, ZHANG L, et al. Application of machine learning-assisted surface-enhanced Raman spectroscopy in medical laboratories: principles, opportunities, and challenges[J]. TrAC Trends in Analytical Chemistry, 2025, 184:118135.
[73] MAHMOUD A Y F, TEIXEIRA A, ARANDA M, et al. Will data analytics revolution finally bring SERS to the clinic?[J]. TrAC Trends in Analytical Chemistry, 2023, 169:117311.
[74] HERNÁNDEZ-VIDALES K, GUEVARA E, OLIVARES-ILLANA V, et al. Characterization of wild-type and mutant p53 protein by Raman spectroscopy and multivariate methods[J]. Journal of Raman Spectroscopy, 2019, 50(10):1388-1394.
[75] WU X X, XIA Y Z, HUANG Y J, et al. Improved SERS-active nanoparticles with various shapes for CTC detection without enrichment process with supersensitivity and high specificity[J]. ACS Applied Materials & Interfaces, 2016, 8(31):19928-19938.
[76] PANG Y F, WANG C W, XIAO R, et al. Dual-selective and dual-enhanced SERS nanoprobes strategy for circulating hepatocellular carcinoma cells detection[J]. Chemistry-A European Journal, 2018, 24(27):7060-7067.
[77] FANG X L, ZENG Q Y, YAN X L, et al. Fast discrimination of tumor and blood cells by label-free surface-enhanced Raman scattering spectra and deep learning[J]. Journal of Applied Physics, 2021, 129(12):123103.
[78] RIPPA M, CASTAGNA R, PANNICO M, et al. Octupolar metastructures for a highly sensitive, rapid, and reproducible phage-based detection of bacterial pathogens by surface-enhanced Raman scattering[J]. ACS Sensors, 2017, 2(7):947-954.
[79] RODRÍGUEZ-LORENZO L, GARRIDO-MAESTU A, BHUNIA A K, et al. Gold nanostars for the detection of foodborne pathogens via surface-enhanced Raman scattering combined with microfluidics[J]. ACS Applied Nano Materials, 2019, 2(10):6081-6086.
[80] LI H, CAO Y B, LU F. Differentiation of different antifungals with various mechanisms using dynamic surface-enhanced Raman spectroscopy combined with machine learning[J]. Journal of Innovative Optical Health Sciences, 2021, 14(4):2141002.
[81] HU X, ZENG Q Z, XIAO J, et al. Herpes simplex virus 1 induces microglia gasdermin D-dependent pyroptosis through activating the NLR family pyrin domain containing 3 inflammasome[J]. Frontiers in Microbiology, 2022, 13:838808.
[82] FREITAS C, ELEUTÉRIO J, SOARES G, et al. Towards rapid and low-cost stroke detection using SERS and machine learning[J]. Biosensors, 2025, 15(3):136.
[83] KAO Y C, HAN X M, LEE Y H, et al. Multiplex surface-enhanced Raman scattering identification and quantification of urine metabolites in patient samples within 30 min[J]. ACS Nano, 2020, 14(2):2542-2552.
[84] CHEN J R T, TAN E X, TANG J X, et al. Machine learning-based SERS chemical space for two-way prediction of structures and spectra of untrained molecules[J]. Journal of the American Chemical Society, 2025, 147(8):6654-6664.
[85] JU Y, NEUMANN O, BAJOMO M, et al. Identifying surface-enhanced Raman spectra with a Raman library using machine learning[J]. ACS Nano, 2023, 17(21):21251-21261.
[86] CHHEDA J, FANG Y T, DERIU C, et al. Discrimination of genetic biomarkers of disease through machine-learning-based hypothesis testing of direct SERS spectra of DNA and RNA[J]. ACS Sensors, 2024, 9(5):2488-2498.
[1] 汪廷华,胡振威,占宏祥. 一种新颖的无监督特征选择方法[J]. 《山东大学学报(理学版)》, 2024, 59(12): 130-140.
[2] 范金宇,邹杨,熊健,古勇毅. 基于非负CP分解的图像数据监控方法[J]. 《山东大学学报(理学版)》, 2024, 59(1): 27-34.
[3] 李绎冉,赵宁,张志坚. 多服务器串联排队系统中平均排队时间的预测[J]. 《山东大学学报(理学版)》, 2024, 59(1): 17-26.
[4] 苏自鹏,袁磊,刘鹏,陈兴蜀,罗永刚,陈良国. 高速网络流实时处理模型研究与实现[J]. 《山东大学学报(理学版)》, 2022, 57(9): 25-32.
[5] 张杰,彭国军,杨秀璋. 基于动态API调用序列和机器学习的恶意逃避样本检测方法[J]. 《山东大学学报(理学版)》, 2022, 57(7): 85-93.
[6] 李颖,张国林. 互信息和核熵成分分析的油中溶解气体浓度建模[J]. 《山东大学学报(理学版)》, 2022, 57(7): 43-52.
[7] 周安民,户磊,刘露平,贾鹏,刘亮. 基于熵时间序列的恶意Office文档检测技术[J]. 《山东大学学报(理学版)》, 2019, 54(5): 1-7.
[8] 董哲瑾,王健,钱凌飞,林鸿飞. 一种用户成长性画像的建模方法[J]. 《山东大学学报(理学版)》, 2019, 54(3): 38-45.
[9] 陈鑫,薛云,卢昕,李万理,赵洪雅,胡晓晖. 基于保序子矩阵和频繁序列模式挖掘的文本情感特征提取方法[J]. 山东大学学报(理学版), 2018, 53(3): 36-45.
[10] 徐也,徐蔚然. 基于语义特征扩展的知识库增量引文推荐算法[J]. 山东大学学报(理学版), 2016, 51(11): 26-32.
[11] 刘铭, 昝红英, 原慧斌. 基于SVM与RNN的文本情感关键句判定与抽取[J]. 山东大学学报(理学版), 2014, 49(11): 68-73.
[12] 潘清清,周枫,余正涛,郭剑毅,线岩团. 基于条件随机场的越南语命名实体识别方法[J]. 山东大学学报(理学版), 2014, 49(1): 76-79.
[13] 杜瑞颖, 杨勇, 陈晶, 王持恒. 一种基于相似度的高效网络流量识别方案[J]. 山东大学学报(理学版), 2014, 49(09): 109-114.
[14] 董源1,徐雅斌1,2*,李卓1,2,李艳平1. 基于社会计算和机器学习的垃圾邮件识别方法的研究[J]. J4, 2013, 48(7): 72-78.
[15] 黄林晟1,邓志鸿1,2,唐世渭1,2,王文清3,陈凌3. 基于编辑距离的中文组织机构名简称-全称匹配算法[J]. J4, 2012, 47(5): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!