您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (3): 39-47.doi: 10.6040/j.issn.1671-9352.2.2022.2045

• • 上一篇    下一篇

加权犹豫模糊偏好关系及其在群体决策中的应用

冯雪1,2,3,耿生玲1,3 *,李永明4   

  1. 1.青海师范大学计算机学院, 青海 西宁 810016;2.青海民族大学数学与统计学院, 青海 西宁 810007;3.藏语智能信息处理及应用国家重点实验室, 青海 西宁 810008;4.陕西师范大学计算机科学学院, 陕西 西安 710069
  • 发布日期:2023-03-02
  • 作者简介:冯雪(1989— ),女,博士研究生,讲师,研究方向为模糊分析学研究及不确定信息智能处理. E-mail:fengx8023@163.com*通信作者简介:耿生玲(1970— ),女,博士,教授,博士生导师,研究方向为数据挖掘、不确定信息智能处理技术和理论. E-mail:geng_sl@126.com
  • 基金资助:
    国家自然科学基金资助项目(61862055);国家重点研发计划资助项目(2020YFC1523305);青海省重点研发项目(2019-GX-162)

Weighted hesitation fuzzy preference relation and its application in group decision making

FENG Xue1,2,3, GENG Sheng-ling1,3*, LI Yong-ming4   

  1. 1. College of Computer Science and Technology, Qinghai Normal University, Xining 810016, Qinghai, China;
    2. College of Mathematics and Statics, Qinghai Minzu University, Xining 810007, Qinghai, China;
    3. The Key State Laboratory of Tibetan Intelligent Information Processing and Application, Xining 810008, Qinghai, China;
    4. College of Computer Science, Shaanxi Normal University, Xian 710069, Shaanxi, China
  • Published:2023-03-02

摘要: 考虑到犹豫模糊偏好关系更能全面地表征决策者的偏好信息, 将犹豫模糊偏好关系置于权重意义下, 定义了加权犹豫模糊偏好关系和乘性一致的加权犹豫模糊偏好关系,并设计了一种一致性调整算法, 用于检测和提高加权犹豫模糊偏好关系的一致性水平,最后给出基于加权犹豫模糊偏好关系(weighted hesitation fuzzy preference relation, WHFPR)的群决策方法, 并通过案例分析表明所提出方法的实用性和可行性。

关键词: 加权犹豫模糊偏好关系, 乘性一致性, 一致性指数, 判定条件, 群体决策

Abstract: Considering that the hesitant fuzzy preference relationship can more comprehensively represent the preference information of decision makers, by putting the hesitation fuzzy preference relationship in the sense of weight, the weighted hesitation fuzzy preference relation and multiplicative consistent weighted hesitation fuzzy preference relation are defined. At the same time, a convergent local consistency improvement process is designed to detect and improve the consistency level of weighted hesitant fuzzy preference relationship. It is more suitable to sovle the group decision-making problem, because the weighted hesitation fuzzy preference relation can fully reflect the preference information of decision makers and clearly reflect the importance of different preference degrees. Finally, a group decision-making is applied to the specific case, which shows that the proposed method is practical and feasible.

Key words: weighted hesitation fuzzy preference relation, multiplicative consistency, consistency index, determination condition, group decision-making

中图分类号: 

  • O159
[1] SAATY T L. Axiomatic foundation of the analytic hierarchy process[J]. Management Science, 1986, 32(7):841-855.
[2] BUSTINCE H, PAGOLA M, MESIAR R, et al. Grouping, overlap, and generalized bientropic functions for fuzzy modeling of pairwise comparisons[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(3):405-415.
[3] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[4] ORLOVSKY S A. Decision-making with a fuzzy preference relation[J]. Fuzzy Sets and Systems, 1978, 1(3):155-167.
[5] XU Zeshui. On compatibility of interval fuzzy preference relations[J]. Fuzzy Optimization and Decision Making, 2004, 3(3):217-225.
[6] XU Zeshui. Intuitionistic preference relations and their application in group decision making[J]. Information Sciences, 2007, 177(11):2363-2379.
[7] XIA Meimei, XU Zeshui. Hesitant fuzzy information aggregation in decision making[J]. International Journal of Approximate Reasoning, 2011, 52(3):395-407.
[8] XIA M M, XU Z S, CHEN N. Some hesitant fuzzy aggregation operators with their application in group decision making[J]. Group Decision and Negotiation, 2013, 22(2):259-279.
[9] ZHANG Zhinming, WANG Chao, TIAN Xuedong. A decision support model for group decision making with hesitant fuzzy preference relations[J]. Knowledge-Based Systems, 2015, 86:77-101.
[10] 曾文艺,李德清,尹乾. 加权犹豫模糊集的群决策方法[J]. 控制与决策, 2019, 34(3):529-533. ZENG Wenyi, LI Deqing, YI Qian. Group decision making method based on weighted hesitant fuzzy sets[J]. Control and Decision, 2019, 34(3):529-533.
[11] 邵亚斌,王宁. 基于梯形模糊数Pythagorean模糊集的熵及决策规则[J]. 山东大学学报(理学版), 2020, 55(4):108-117. SHAO Yabin, WANG Ning. Entropy and decision rules based on trapezoidal fuzzy number Pythagorean fuzzy sets[J]. Journal of Shandong University(Natural Science), 2020, 55(4):108-117.
[12] 张娇娇, 张少谱, 冯涛. 毕达哥拉斯模糊系统的优势关系及其约简[J]. 山东大学学报(理学版), 2021, 56(3):96-110. ZHANG Jiaojiao, ZHANG Shaopu, FENG Tao. Dominance relationship and reduction of Pythagorean fuzzy systems[J]. Journal of Shandong University(Natural Science), 2021, 56(3):96-110.
[13] 巩增泰,他广朋. 直觉模糊集所诱导的软集语义及其三支决策[J]. 山东大学学报(理学版), 2022, 57(8):68-76. GONG Zengtai, TA Guangpeng. Semantics of the soft set induced by intuitionistic fuzzy set and its three-way decision[J]. Journal of Shandong University(Natural Science), 2022, 57(8):68-76.
[14] 徐迎军.区间乘性偏好关系相容度分析[J].山东大学学报(理学版),2011,46(7):60-64. XU Yingjun. Analysis of compatibility of interval multiplicative preference relations[J]. Journal of Shandong University(Natural Science), 2011,46(7):60-64.
[15] TORRA V. Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010, 25(6):529-539.
[16] ZHU Bin, XU Zeshui, XIA Meimei. Hesitant fuzzy geometric Bonferroni means[J]. Information Sciences, 2012, 182(11):72-85.
[17] CHEN Na, XU Zeshui, XIA Meimei. Correlation coefficients of hesitant fuzzy sets and applications to clustering analysis[J]. Applied Mathematical Modelling, 2013, 37:2197-2211.
[18] LIAO Huchang, XU Zeshui, XIA Meimei. Multiplicative consistency of hesitant fuzzy preference relation and its application in group decision making[J]. Journal of Information Technology and Decision Making, 2014, 13(4):47-76.
[19] TANINO T. Fuzzy preference orderings in group decision making[J]. Fuzzy Sets and Systems, 1984, 12:117-131.
[1] 巩增泰,他广朋. 直觉模糊集所诱导的软集语义及其三支决策[J]. 《山东大学学报(理学版)》, 2022, 57(8): 68-76.
[2] 苏晓艳,陈京荣,尹会玲. 广义区间值Pythagorean三角模糊集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2022, 57(8): 77-87.
[3] 郝秀梅,刘纪芹. 外P-模糊集的截集与扩展粗集模型[J]. 《山东大学学报(理学版)》, 2020, 55(10): 1-6.
[4] 郝秀梅,李宁宁. P-信息隐藏挖掘的数量特征及应用[J]. 《山东大学学报(理学版)》, 2019, 54(9): 9-14.
[5] 孙倩倩,李小南. 区间毕达哥拉斯模糊集的信息度量及其应用[J]. 《山东大学学报(理学版)》, 2019, 54(9): 43-53.
[6] 张廷海,覃锋. 基于重叠函数和分组函数的蕴涵分配性[J]. 《山东大学学报(理学版)》, 2019, 54(9): 36-42.
[7] 程亚菲,赵彬. 模糊蕴涵关于合取2-一致模满足输入律的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(8): 20-32.
[8] 于晓丹,董丽,吴聪,孔祥智. 软关联环[J]. 山东大学学报(理学版), 2018, 53(4): 31-35.
[9] 刘莉君. 布尔代数上triple-δ-导子的特征及性质[J]. 山东大学学报(理学版), 2017, 52(11): 95-99.
[10] 张琬迪,宋晓秋,吴尚伟. 一类模糊积分微分方程的模糊微分变换法[J]. 山东大学学报(理学版), 2017, 52(10): 42-49.
[11] 刘莉君. 剩余格上n-重正蕴涵滤子的特征及刻画[J]. 山东大学学报(理学版), 2017, 52(8): 48-52.
[12] 彭家寅. BL-代数的扰动模糊理想[J]. 山东大学学报(理学版), 2016, 51(10): 78-94.
[13] 卢威,宋晓秋,黄雷雷. 基于模糊积分的Hermite-Hadamard和Sandaor类型的不等式[J]. 山东大学学报(理学版), 2016, 51(8): 22-28.
[14] 彭家寅. 格蕴涵代数的不分明化滤子[J]. 山东大学学报(理学版), 2016, 51(2): 119-126.
[15] 彭家寅. 关联模糊集理论的伪BL-代数的软滤子[J]. 山东大学学报(理学版), 2015, 50(08): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!