山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (05): 51-54.doi: 10.6040/j.issn.1671-9352.0.2014.241
孙国伟, 买阿丽
SUN Guo-wei, MAI A-li
摘要: 研究了一类二阶非线性差分方程同宿解的存在性。利用临界点理论, 在满足更一般的超线性条件下, 证明了该方程同宿解的多解性。
中图分类号:
[1] GUO Zhiming, YU Jianshe. The existence of periodic and subharmonic solutions of subquadratic second order difference equations[J]. J Lond Math Soc, 2003, 68(2):419-430. [2] GUO Zhiming, YU Jianshe. Existence of periodic and subharmonic solutions for second-order superlinear difference equations[J]. Sci China Ser A, 2003, 46(4):506-515. [3] ZHOU Zhan, YU Jianshe, GUO Zhiming. Periodic solutions of higher-dimensional discrete systems[J]. Proc Roy Soc Edinburgh Sect A, 2004, 134(5):1013-1022. [4] MA Manjun, GUO Zhiming. Homoclinic orbits for second order self-adjoint difference equations[J]. J Math Anal Appl, 2006, 323(1):513-521. [5] MA Defang, ZHOU Zhan. Existence and multiplicity results of homoclinic solutions for the DNLS equations with unbounded potentials[J]. Abstra Appl Anal, 2012, 2012: 1-15. [6] MAI Ali, ZHOU Zhan. Ground state solutions for the periodic discrete nonlinear Schrdinger equations with superlinear nonlinearities[J]. Abstr Appl Anal, 2013, 2013: 1-11. [7] MAI Ali, ZHOU Zhan. Discrete solitons for periodic discrete nonlinear Schrdinger equations[J]. Appl Math Comput, 2013, 222:34-41. [8] SUN Guowei. On Standing Wave solutions for discrete nonlinear Schrdinger equations[J]. Abstr Appl Anal, 2013, 2013: 1-6. [9] IANNIZZOTTO A, TERSIAN S. Multiple homoclinic orbits for the discrete p-Laplacian via critical point theory[J]. J Math Anal Appl, 2013, 403(1):173-182. [10] RABINOWITZ P. Minimax methods in critical point theory with applications to differential equations[M]//CBMS Regional Conference Series in Mathematics vol 65. Providence: American Mathematical Society, 1986. |
[1] | 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103. |
[2] | 刘曼莉,高凌云. 一类复差分方程组的亚纯解[J]. 山东大学学报(理学版), 2016, 51(10): 34-40. |
[3] | 刘洋,达朝究,李富明. Nehari流形在一类半线性抛物方程爆破中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 123-127. |
[4] | 杨甲山, 孙文兵. 具正负系数的二阶差分方程的振动性[J]. J4, 2011, 46(8): 59-62. |
[5] | 李同兴,韩振来*,张 萌,曹凤娟 . 一类具有连续变量的二阶非线性中立型时滞差分方程的振动性[J]. J4, 2008, 43(2): 70-71 . |
|