您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (05): 45-50.doi: 10.6040/j.issn.1671-9352.0.2014.361

• 论文 • 上一篇    下一篇

时标上带强迫项的二阶中立型时滞动力方程非振动解的存在性

范进军, 路晓东   

  1. 山东师范大学数学科学学院, 山东 济南 250014
  • 收稿日期:2014-08-07 出版日期:2015-05-20 发布日期:2015-05-29
  • 作者简介:范进军(1964-),男,教授,研究方向为非线性微分方程.E-mail:fjj18@126.com
  • 基金资助:
    国家自然科学基金资助项目(11171192);山东省自然科学基金资助项目(ZR2013AM005)

Existence of nonoscillatory solutions to second order forced neutral dynamic equations with time delay on time scales

FAN Jin-jun, LU Xiao-dong   

  1. School of Mathematical Science, Shandong Normal University, Jinan 250014, Shandong, China
  • Received:2014-08-07 Online:2015-05-20 Published:2015-05-29

摘要: 讨论时标上一类带强迫项的二阶中立型时滞动力方程非振动解的存在性。主要工具是Krasnoselskii不动点定理。

关键词: 时滞, 中立型, 动力方程, 时标, 非振动解

Abstract: The existence of nonoscillatory solutions to a calss of second order forced neutral dynamic equations with time delay on time scales is discussed. The main tool is the Krasnoselskii's fixed point theorem.

Key words: time scales, time delay, neutral, nonoscillatory solution, dynamic equations

中图分类号: 

  • O175.14
[1] AGARWAL R P, BOHNER M. Basic calculus on time scales and some of its applications[J]. Results Math, 1999, 35:3-22.
[2] AGARWAL R P, BOHNER M, O'REGAN D, et al. Dynamic equations on time scales: a survey[J]. J Comput Appl Math, 2002, 141(1/2):1-26.
[3] BOHNER M, PETERSON A. Dynamic equations on time scales. An introduction with applications[M]. Berlin: Birkhauser Boston, 2001.
[4] ERBE L H, KONG Qingkai, ZHANG binggen. Oscillation theory for functional differential equations[M]. New York: Marcel Dekker, 1995.
[5] ERBE L H, PETERSON A. Positive solutions for a nonlinear differential equation on a measure chain[J]. Math Anal Appl, 2002, 275(1):418-438.
[6] HILGER S. Analysis on measure chains-a unified approach to continuous and discrete calculus[J]. Results Math,1990, 18:18-56.
[7] ERBE L H, JIA Baoguo, PETERSON A. Nonoscillation for second order sublinear dynamic equations on time scales[J]. J Comput Appl Math, 2009, 232:594-599.
[8] ZAFER A. On oscillation and nonoscillation of second order dynamic equations[J]. Appl Math Lett, 2009, 22:136-141.
[9] FAN Jinjun, LI Liqing. Existence of positive solutions for p-Laplacian dynamic equations with derivative on time scales[J]. Journal of Applied Mathematics, 2013, 2013:736583.1-736583.7.
[10] 范进军,张雪玲,刘衍胜.时间测度上带p-Laplace算子的m点边值问题正解的存在性[J]. 山东大学学报:理学版, 2012,47(6):16-19. FAN Jinjun, ZHANG Xueling, LIU Yansheng. Existence of positive solutions of nonlinear m-point boundary value problem with p-Laplace operator on time scales[J]. Journal of Shandong University: Natural Science, 2012, 47(6):16-19.
[11] BAINOV D D, MISHEV D P. Oscillation theory for neutral differential equations with delay[M]. New York: Adam Hilger, 1991:1-350.
[12] ZHOU Yong, HUANG Yunqing. Existence of nonoscillatory solutions of second order neutral delay difference equations[J]. J Math Anal Appl, 2001, 20(4):1065-1074.
[13] ERBE L H, HILGER S. Sturmian theory on measure chains[J]. Differential Equations Dynamic Systems, 1993, 1:223-246.
[14] ZHOU Yong. Existence for nonoscillatory solutions of second-order nonlinear differential equations[J]. J Math Anal Appl, 2007, 331(1):91-96.
[15] LI Tongxing, HAN Zhenlai, SUN Shurong, et al. Existence of nonoscillatory solutions to second-order neutral delay dynamic equations on time scales[J]. Advances in Difference Equations, 2009, 2009:562329.01-562329.10.
[16] 高瑾,程世辉,王其如.二阶非线性中立型时标动态方程非振动解的存在性[J]. 中山大学学报:自然科学版,2009,48(6):23-26. GAO Jin, CHENG Shihui, WANG Qiru. Existence of nonoscillatory solutions to second-order nonlinear neutral dynamic equations on time scales[J]. Journal of Zhongshan University: Natural Science, 2009, 48(6):23-26.
[17] AGARWAL R P, BOHNER M, SAKER S H. Oscillation of second order delay dynamic equations[J]. Canadian Applied Mathematics Quarterly, 2005, 13(1):1-18.
[18] ABDALLAH S H. Oscillatory and non-oscillatory behavior of second-order neutral delay equations[J]. Appl Math Comput, 2003, 135:333-344.
[19] AGARWAL R P, BOHNER M, REHAK P. Half-linear dynamic equations[J]. Nonlinear Analysis and Applications, 2003, 1:1-57.
[1] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[2] 董兴林,齐欣. 基于时滞效应的青岛市两阶段科技投入与产出互动关系[J]. 山东大学学报(理学版), 2018, 53(5): 80-87.
[3] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
[4] 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94.
[5] 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110.
[6] 鞠培军,王伟. 多输入多输出线性系统的时滞界问题[J]. 山东大学学报(理学版), 2017, 52(11): 60-64.
[7] 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87.
[8] 王亚军,张申,胡青松,刘峰,张玉婷. 具有测量噪声的时滞多智能体系统的一致性问题[J]. 山东大学学报(理学版), 2017, 52(1): 74-80.
[9] 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103.
[10] 谭成,张焕水. 具有输入时滞的离散时间随机系统Lyapunov镇定性条件[J]. 山东大学学报(理学版), 2016, 51(5): 114-120.
[11] 王长弘,王林山. 基于忆阻器的S-分布时滞随机神经网络的均方指数稳定性[J]. 山东大学学报(理学版), 2016, 51(5): 130-135.
[12] 李琳, 张焕水. 离散时间多输入时滞系统的镇定性问题[J]. 山东大学学报(理学版), 2015, 50(11): 91-97.
[13] 王春生, 李永明. 中立型多变时滞随机微分方程的稳定性[J]. 山东大学学报(理学版), 2015, 50(05): 82-87.
[14] 郑春华, 刘文斌. 一类具有时滞的分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2015, 50(03): 73-79.
[15] 甄艳, 王林山. S-分布时滞随机广义细胞神经网络的均方指数稳定性分析[J]. 山东大学学报(理学版), 2014, 49(12): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!