您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (10): 11-15.doi: 10.6040/j.issn.1671-9352.0.2015.541

• • 上一篇    下一篇

基于Chebyshev节点组的多元张量积多项式插值在布朗片测度下的平均误差

熊利艳,许贵桥*   

  1. 天津师范大学数学科学学院, 天津 300387
  • 收稿日期:2015-11-18 出版日期:2016-10-20 发布日期:2016-10-17
  • 通讯作者: 许贵桥(1963— ),男,教授,研究方向为函数逼近论. E-mail:Xuguiqiao@eyou.com E-mail:930042710@qq.com
  • 作者简介:熊利艳(1990— ),女,硕士研究生,研究方向为函数逼近论. E-mail:930042710@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11471043)

The average error of linear tensor product multivariate polynomial interpolation based on Chebyshev nodes on the Brownian sheet measure

XIONG Li-yan, XU Gui-qiao*   

  1. College of Mathematical Science, Tianjin Normal University, Tianjin 300387, China
  • Received:2015-11-18 Online:2016-10-20 Published:2016-10-17

摘要: 利用一元函数的Lagrange多项式插值构造了一种线性张量积多项式插值逼近多元函数。对于加权L2范数, 在布朗片测度下讨论了其平均误差,得到了相应量的强渐近阶。同过去利用线性泛函信息构造算法相比, 本文的算法利用的是标准信息, 且算法是构造性的, 可以直接解决实际问题。而且在平均误差方面, 结果显示该算法在一维情形下是阶最优的, 且在高维情形下与利用线性泛函信息得到的最优算子具有类似的逼近阶。

关键词: 加权L2范数, 平均误差, Chebyshev节点, 布朗片测度

Abstract: Based on univariate Lagrange polynomial interpolation, a kind of linear tensor product polynomial interpolation is constructed to approximate multivariate functions. For the weighted L2-norm,their average errors is studied on the Brownian sheet measure and obtained the corresponding stronger asymptotic order. Compared with the past algorithms based on linear functional information, our algorithms are based on standard information and it is constructive. It can also be applied to solve practical problems. From the perspective of average error, it is showed that algorithms are order optimal to the univariate function case setting, and have a similar approximation order to the optimal algorithms based on linear functional information to the multivariate function case setting.

Key words: Chebyshev nodes, average error, weighted L2-norm, Brownian sheet measure

中图分类号: 

  • O174.41
[1] TRAUB J F, WASILKOWSKI G W, WOZNIAKOWSKI H. Information-Based Complexity[M]. New York: Academic Press, 1988.
[2] KLAUS R. Average-case analysis of numerical problems[M]. New York: Springer-Verlag, 2000.
[3] SULDIN A V. Wiener measure and its applications to approximation methods I[J]. Izv Vyssh Ucheb Zaveb Mat, 1959, 13:145-158.
[4] SULDIN A V. Wiener measure and its applications to approximation methods II[J]. Izv Vyssh Ucheb Zaved Mat, 1960, 18:165-179.
[5] NOVAK E, WOZNIAKOWSKI H. Tractability of multivariate problems, standard information for operator[M]. Switzerland:European Mathematical Society, 2012.
[6] 许贵桥. Lagrange插值和Hermite-Fejér插值在Wiener空间下的平均误差[J]. 数学学报, 2007, 50(6):1281-1296. XU Guiqiao. The average error for lagrange interpolation and Hermite-Fejér interpolation on the wiener space[J]. Acta Mathematica Sinica, 2007, 50(6):1281-1296.
[7] LIFSHITS M. Lectures on Gaussian processes[M]. New York: Springer, 2012.
[8] VARMA A K, PRASAD J. An analogue of a problem of P. Erdös and E. Feldheim on Lp convergence of interpolatory processes[J]. Journal of Approximation Theory, 1989, 56(2):225-240.
[9] WASILKOWSKI G W. Integration and approximation of multivariate functions: average case complexity with isotropic Wiener measure[J]. Bull Amer Math Soc(N. S.), 1993, 28:308-314.
[1] 张艳艳,闫超. 基于第四类Chebyshev多项式零点的Lagrange插值多项式逼近[J]. 山东大学学报(理学版), 2017, 52(8): 10-16.
[2] 翟学博, 胡修炎. 关于Levy平均的一个等价估计及应用[J]. 山东大学学报(理学版), 2015, 50(04): 24-26.
[3] 王 涛,耿红玲 . Lupas-Bezier型算子列对局部有界函数的点态逼近估计[J]. J4, 2007, 42(8): 83-85 .
[4] 王 涛 . Post-Gamma算子关于导数为局部有界函数的点态逼近估计[J]. J4, 2007, 42(4): 75-78 .
[5] 周运明 . 广义LupasBaskakov算子关于导数为局部有界函数的点态逼近估计[J]. J4, 2006, 41(1): 69-73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!