您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (1): 43-55.doi: 10.6040/j.issn.1671-9352.0.2016.174

• • 上一篇    下一篇

基于鲁棒优化的低碳再制造物流网络模型

李伯棠,赵刚   

  1. 上海海事大学交通运输学院, 上海 201306
  • 收稿日期:2016-04-20 出版日期:2017-01-20 发布日期:2017-01-16
  • 作者简介:李伯棠(1991— ),男,博士研究生,研究方向为港口管理、物流管理.E-mail:botangli@163.com
  • 基金资助:
    上海海事大学研究生创新基金资助项目(2016ycx066)

Model of low carbon remanufacturing logistics network based on robust optimization

LI Bo-tang, ZHAO Gang   

  1. College of Transport &
    Communications, Shanghai Maritime University, Shanghai 201306, China
  • Received:2016-04-20 Online:2017-01-20 Published:2017-01-16

摘要: 为了解决不确定环境下低碳再制造物流网络设计的问题,在碳排放权可交易的情况下,考虑运输成本、需求和废旧产品质量的不确定性,对于回收中心的开或关及其是否扩建、其余设施选址和节点间运输路线等决策,采用鲁棒优化方法,以碳交易收支和物流成本之和最小化为目标,建立了再制造物流网络鲁棒混合线性规划模型。通过案例验证了鲁棒模型的可行性,就碳交易和不确定参数的变化进行分析,表明鲁棒模型的决策平衡了最优性与鲁棒性。

关键词: 碳排放权交易, 网络规划, 再制造物流, 鲁棒优化

Abstract: In order to solve the issue of low-carbon remanufacturing logistic network designing under uncertain situation, in the case of carbon emissions trading, considering the uncertainty of transportation cost, demand and waste product quality, for the decision on the opening or closing of the recycling center and its expansion, the location of the remaining facilities and transportation routes between nodes, by using the robust optimization, to minimize the sum of carbon trading revenue and expenditure and logistics costs, we establishes the robust mixed linear programming of remanufacturing logistic network. According to the case verified the feasibility of the robust model, the analysis included the variation of carbon trading and uncertain parameter indicates the balance of optimality and robustness of robust model decision.

Key words: carbon emissions trading, remanufacturing logistics, robust optimization, network planning

中图分类号: 

  • F224
[1] 徐旭. 低碳物流的内涵、特征及发展模式[J]. 商业研究, 2011(4):183-187. XU Xu. Content, features and development model of low-carbon logistics[J]. Commercial Research, 2011(4):183-187.
[2] CACHON G. Carbon footprint and the management of supply chains[C] // The INFORMS Annual Meeting. San Diego: CA, 2009, 1:99-116.
[3] WANG Y, LU T, ZHANG C. Integrated logistics network design in hybrid manufacturing/remanufacturing system under low-carbornrestriction[M]. Berlin: Springer-Verlag, 2013.
[4] ELHEDHLI S, MERRICK R. Green supply chain network design to reduce carbon emissions[J]. Transportation Research Part D Transport and Environment, 2012, 17(5):370-379.
[5] ACCORSI R, CHOLETTE S, MANZINI R, et al. The land-network problem: ecosystem carbon balance in planning sustainable agro-food supply chains[J]. Journal of Cleaner Production, 2016, 112:158-171.
[6] 常香云, 朱慧赟. 碳排放约束下企业制造/再制造生产决策研究[J]. 科技进步与对策, 2012, 29(11):75-78. CHANG Xiangyun, ZHU Huiyun. Decision making research of manufacturing/remanufacturing of enterprises under the constraint of carbonemission[J]. Scientific Technology Progress and Policy, 2012, 29(11):75-78.
[7] TORNESE F, CARRANO A L, THORN B K, et al. Carbon footprint analysis of pallet remanufacturing[J]. Journal of Cleaner Production, 2016, 126:630-642.
[8] TALAEI M, MOGHADDAM B F, PISHVAEE M S, et al. A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: a numerical illustration in electronics industry[J]. Journal of Cleaner Production, 2016, 113:662-673.
[9] PISHVAEE M S, TORABI S A, RAZMI J. Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty[J]. Computers and Industrial Engineering, 2012, 62(2):624-632.
[10] BEYER H G, SENDHOFF B. Robust optimization: a comprehensive survey[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(33-34):3190-3218.
[11] BERTSIMAS, SIM M. The price of robustness[J]. Operations Research, 2004, 52(1):35-53.
[12] BERTSIMAS D. A robust optimization approach to supply chain management[M] //Integer Programming and Combinatorial Optimization. Berlin: Springer-Verlag, 2004:86-100.
[1] 张克勇,李江鑫,姚建明,李春霞. 竞争型零售商具公平敏感性的供应链决策[J]. 山东大学学报(理学版), 2018, 53(9): 83-94.
[2] 李美娟,刘媛,徐林明,吴飞美. 基于Football的动态组合评价方法[J]. 山东大学学报(理学版), 2018, 53(5): 88-94.
[3] 梁红燕, 许民利, 简惠云. 基于消费者选择偏好的可替代品订货策略[J]. 山东大学学报(理学版), 2015, 50(07): 80-88.
[4] 陆媛媛,李明芳 . 基于合作广告的零售商订货策略与渠道协调问题研究[J]. J4, 2008, 43(1): 107-112 .
[5] 蒋鹏飞,王 震 . 三级供应链合作博弈分析[J]. J4, 2008, 43(1): 103-106 .
[6] 蒋鹏飞,沙亚军,胡发胜 . 二级供应链不同博弈研究[J]. J4, 2007, 42(2): 51-55 .
[7] 安起光,王厚杰 . 基于机会约束的均值—VaR投资组合模型再研究[J]. J4, 2006, 41(2): 94-100 .
[8] 王 震,蒋鹏飞 . 古诺寡头市场分销商线性激励机制[J]. J4, 2008, 43(9): 85-88 .
[9] 纪荣芳,国忠金 . 内生土地效用指数的城市经济增长优化配置模型[J]. J4, 2008, 43(6): 92-96 .
[10] 陆媛媛, . 基于渠道不对称的多品牌代理零售商的应对策略研究[J]. J4, 2008, 43(8): 19-23 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!