您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (4): 56-60.doi: 10.6040/j.issn.1671-9352.0.2016.224

• • 上一篇    下一篇

两类非线性波动方程解的爆破时间的下确界

董莉   

  1. 山西大学数学科学学院, 山西 太原 030006
  • 收稿日期:2016-05-19 出版日期:2017-04-20 发布日期:2017-04-11
  • 作者简介:董莉(1990— ),女,硕士研究生,研究方向为偏微分方程和组合优化. E-mail:617408853@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61174082);国家自然科学青年基金资助项目(61104129)

Lower bounds for blow up time of two nonlinear wave equations

DONG Li   

  1. College of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China
  • Received:2016-05-19 Online:2017-04-20 Published:2017-04-11

摘要: 对带有强阻尼项和频散项的非线性黏弹方程和非线性Petrovsky方程的初边值问题进行研究,在方程的解爆破的前提下,通过适当的扰动得到爆破时间的下确界。

关键词: 频散项, Petrovsky方程, 强阻尼项, 爆破, 下确界

Abstract: The initial boundary value problem for the nonlinear viscoelastic euqation with strong damping term and dispersive term and the nonlinear Petrovsky equation is investigated. Under the premise of the solutions blow up of the equations, the lower bound of the blow up time is obtained by the proper perturbation.

Key words: dispersive term, blow-up, Petrovsky equation, strong damping term, lower bound

中图分类号: 

  • O175.29
[1] GEORGIEV V, TODOROVA G. Existence of solutions of the wave equation with nonlinear damping and source terms[J]. J Differential Equations, 1994, 109:295-308.
[2] MESSAOUDI S A. Blow up and global existence in a nonlinear viscoelastic wave equation[J]. Math Nachr, 2003, 260:58-66.
[3] YANG Zhifeng. Blow-up of solutions for a viscoelastic equation with nonlinear damping[J].Central Eur J Math, 2008, 6(4):568-575.
[4] BERRIMI S, MESSAOUDI S A. Existence and decay of solutions of a viscoelastic equation with a nonlinear source[J].Nonlinear Anal, 2006, 64:2314-2331.
[5] Messaoudi S A. Global existence and nonexistence in s system of Petrovsky equation[J]. Nonlinear Anal, 2009, 70:296-308.
[6] LIANG Feng, GAO Hongjun. Exponential energy decay and blow-up of solutions for a system of nonlinear Viscoelastic wave equations with strong damping[J].Bound Value Probl, 2011, 1:3-19.
[7] WU Shuntang. General decay of solutions for a viscoelastic equation with nonlinear damping and source terms[J].Acta Math Sci Ser, 2011, 31(4)1436-1448.
[8] GAO Qingyong, LI Fushan, WANG Yanguo. Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipayion[J].Central Eur J Math, 2011, 9(3):686-698.
[9] XU Runzhang, YANG Yanbing, LIU Yacheng. Global well-posedness for strongly damped viscoelastic wave equation[J]. Appl Anal, 2013, 92(1):138-157.
[10] KAFINI M, MUSTAFA M I. Blow-up result in a cauchy viscoelastic problem with strong damping and dispersive [J].Nonlinear Analysis: Real World Applications, 2014, 20:14-20.
[11] TAHAMTANI F, SHAHROUZI M. Existence and blow up of ssolutions to a Petrovsky equation with memory and nonlinear source term[J/OL]. Bound Value Probl, 2012, 2012: 50. https://lnk.springer.com/article/10.1186/1687-2770-2012-50.
[12] LI Gang, SUN Yun, LIU Wenjun. On asymptotic behavior and blow up of solutions for a nonlinear viscoelastic petrovsky equation with positive initial energy[J]. J Funct Spance Appl, 2013(2103)905867.
[13] LI Fushan, GAO Qingyong. Blow-up of solution for a nonlinear Petrovsky type equation with memoey[J]. Applied Mathematics and Computation, 2016, 274:383-392.
[14] CAVALCANTI M M, CAVALCANTI V N D, FERRIRA J. Existence and uniform decay for nonlinear viscoelastic equation with strong damping[J].Math Methods Appl Sci, 2011, 24:1043-1053.
[15] GEORGIEV V, TODOROVA G. Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation[J]. Phys D: Nonlinear Phenomena, 2008, 237:721-731.
[16] MESSAOUDI S A. Global existence and nonexistence in a system of petrovsky[J]. J Math Anal Appl, 2002, 265: 296-308.
[17] PHILIPPIN G A. Lower bounds for blow-up time in a class of nonlinear wave equation[J]. Z Angew Math Phys, 2015, 66:129-134.
[1] 刘洋,达朝究,李富明. Nehari流形在一类半线性抛物方程爆破中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 123-127.
[2] 吕红杰, 刘静静, 齐静, 刘硕. 弱耗散μ-Hunter-Saxton方程的爆破[J]. 山东大学学报(理学版), 2015, 50(05): 55-59.
[3] 林春进1,徐国静2. 高维Kaniadakis-Quarati 方程的有限时间爆破[J]. 山东大学学报(理学版), 2014, 49(06): 79-84.
[4] 宋丹丹,原保全*. 可压缩磁流体方程组的显式爆破解[J]. J4, 2012, 47(2): 26-30.
[5] 代丽美. 完全非线性一致椭圆方程的边界爆破问题[J]. J4, 2011, 46(6): 34-36.
[6] 阎小丽,原保全*. 欧拉方程的显式爆破解[J]. J4, 2011, 46(12): 104-107.
[7] 李凤萍. 三维广义磁流体方程组解的爆破准则[J]. J4, 2010, 45(4): 90-94.
[8] 陆求赐1,曾有栋2. 非局部波动方程组解的半无界问题[J]. J4, 2010, 45(10): 104-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!