您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (4): 93-99.doi: 10.6040/j.issn.1671-9352.0.2016.338

• • 上一篇    下一篇

P-信息融合与它的P-矩阵推理智能生成

张秀全1,2,李小朝1   

  1. 1. 黄淮学院数学与统计学院, 河南 驻马店 463000;2. 山东大学数学学院, 山东 济南 250100
  • 收稿日期:2016-07-17 出版日期:2017-04-20 发布日期:2017-04-11
  • 作者简介:张秀全(1974— ),男,副教授,硕士研究生,研究方向为信息科学、系统理论与应用. E-mail: zxq3567@163.com
  • 基金资助:
    河南省基础与前沿技术研究项目(142300410449,122300410307);河南省高等学校重点科研项目(16A110035)

P-information fusion and its P-matrix reasoning intelligent generation

ZHANG Xiu-quan1,2, LI Xiao-chao1   

  1. 1. School of Mathematics and statistics, Huanghuai University, Zhumadian 463000, Henan, China;
    2. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Received:2016-07-17 Online:2017-04-20 Published:2017-04-11

摘要: 利用P-增广矩阵推理,给出信息融合智能筛选-发现的理论与应用研究,信息融合智能筛选-发现是在P-增广矩阵推理条件下得到的。P-增广矩阵是利用P-集合的结构、动态特征及改进普通增广矩阵被提出的。论文给出利用P-集合生成P-增广矩阵的方法与P-增广矩阵结构,提出P-增广矩阵推理模型并给出信息融合的智能生成方法和其筛选-发现定理,最后给出这些理论结果的应用。

关键词: P-集合, 信息融合, 筛选-发现定理, P-矩阵推理, 智能筛选-发现

Abstract: Based on P-augmented matrix reasoning, the theory and application research of information fusion intelligent screening-discovery are presented. Information fusion intelligent screening-discovery is obtained under the condition of P-augmented matrix reasoning. P-augmented matrix is obtained by using the structure and dynamic characteristics of P-set and improving common augmented matrix. The method for generating P-augmented matrix by using P-set and the structure of P-augmented matrix are given. The reasoning model of P-augmented matrix and the intelligent generation method of information fusion are presented. The information fusion intelligent screening-discovery theorem and the application of these theoretical results are given.

Key words: P-sets, P-matrix reasoning, information fusion, screening-discovery theorem, intelligent screening-discovery

中图分类号: 

  • O144
[1] 史开泉. P-集合[J].山东大学学报(理学版),2008,47(11):77-84. SHI Kaiquan. P-sets[J].Journal of Shandong University(Natural Science), 2008, 47(11):77-84.
[2] SHI Kaiquan. P-sets and its applications[J].Advances in Systems Science and Applications, 2009(2): 209-219.
[3] 史开泉. P-增广矩阵与信息的智能动态发现-辨别[J].山东大学学报(理学版),2015,50(10):1-12. SHI Kaiquan. P-augmented matrix and dynamic intelligent discovery-identification of information [J].Journal of Shandong University(Natural Science), 2015, 50(10):1-12.
[4] FAN Chengxian, LIN Hongkang. P-sets and the reasoning-identification of disaster information[J]. International Journal of Covergence Information Technology, 2012, 7(1): 337-345.
[5] ZHANG Ling, REN Xuefang. P-sets and its (f,(-overf))-heredity[C] // Advances in Intelligent and Soft Computing. Berlin: Springer, 2010, 82:22-25.
[6] XIU Ming, SHI Kaiquan, ZHANG Li. P-sets and (-overF)-data selection-discovery[C] //Advances in Intelligent and Soft Computing. Berlin: Springer, 2010, 82:791-199.
[7] QIN Yufeng, CHEN Baohui. f-model generated by P-sets[C] // Advances in Intelligent and Soft Computing. Berlin: Springer, 2010, 82:613-620.
[8] ZHANG Li, XIU Ming, SHI Kaiquan. P-sets and applications of internal-Outer data circle[C] // Advances in Intelligent and Soft Computing. Berlin: Springer, 2010, 82:581-591.
[9] LI Yuying, ZHANG Li, SHI Kaiquan. Generation and recovery of compressed data and redundant data[C] // Advances in Intelligent and Soft Computing. Berlin: Springer, 2010, 82:661-671.
[10] 史开泉. 函数P-集合[J].山东大学学报(理学版),2011,46(2):62-69. SHI Kaiquan. Function P-sets[J]. Journal of Shandong University(Natural Science),2011,46(2):62-69.
[11] SHI Kaiquan. Function P-sets[J]. International Journal of Machine Learing and Cybernetics, 2011, 2(4):281-288.
[12] 史开泉. P-信息规律智能融合与软信息图像智能生成[J].山东大学学报(理学版),2014,49(4):1-14. SHI Kaiquan. P-information law intelligent fusion and soft information image intelligent generation[J].Journal of Shandong University(Natural Science), 2014, 49(4):1-14.
[13] 史开泉. 逆P-集合[J].山东大学学报(理学版),2012, 47(1): 98-109. SHI Kaiquan. Inverse P-sets[J]. Journal of Shandong University(Natural Science), 2012, 47(1): 98-109.
[14] 史开泉. 函数逆P-集合与信息规律动态特性[J].山东大学学报(理学版),2012,47(8):73-80. SHI Kaiquan. Function inverse P-sets and information law fusion[J]. Journal of Shandong University(Natural Science), 2012, 47(8):73-80.
[15] SHI Kaiquan. Function inverse P-sets and the hiding information generated by function inverse P-information law fusion[C] // Advances in Information and Communication Technology(IFIPAICT)Digital Services and Information Intelligence. Berlin:Springer, 2014, 445:224-237.
[16] NICHOLSON D.Defence applications of agent-based information fusion[J]. Computer Journal, 2011, 54(2): 263-273.
[17] MNATSAKANYAN Z R, BURKOM H S,HASHEMIAN M R, et al. Distributed information fusion models for regional public health surveillance[J]. Information Fusion, 2012, 13(2):129-136.
[18] DENG Xinyang, DENG Yong. Multisensor information fusion based on dempster-shafer theory and power average operato[J]. Journal of Computational Information Systems, 2013, 9(16):6417-6424.
[19] ZHAO Yunli, LI Ming, JIN Junling, et al. Multisensor information fusion state estimator for systems with random sensor errors[J]. International Journal of Hybrid Information Technology, 2014, 7(5): 1-10.
[20] BIERNACKI P. Songs recognition using audio information fusion[J]. International Journal of Electronics and Telecommunications, 2015, 61(1): 37-41.
[1] 陈保会,张凌,史开泉. P-信息智能动态融合与信息规律状态智能识别[J]. 山东大学学报(理学版), 2018, 53(2): 83-87.
[2] 徐凤生,于秀清,史开泉. 属性基数余-亏值定理与信息规律动态内-外分离[J]. 山东大学学报(理学版), 2017, 52(4): 87-92.
[3] 郭华龙,张凌. 数据分离与属性状态特征[J]. 山东大学学报(理学版), 2017, 52(12): 89-94.
[4] 张凌,任雪芳,史开泉. 信息规律智能变换-伪装与P-规律增广矩阵[J]. 山东大学学报(理学版), 2016, 51(8): 90-97.
[5] 郭华龙,任雪芳,张凌. 数据的动态挖掘与P-增广矩阵关系[J]. 山东大学学报(理学版), 2016, 51(8): 105-110.
[6] 任雪芳,张凌. 逆P-集合的扰动定理与数据的扰动挖掘[J]. 山东大学学报(理学版), 2016, 51(12): 54-60.
[7] 汤积华,陈保会,史开泉. P-增广矩阵推理与信息的智能分解挖掘[J]. 山东大学学报(理学版), 2016, 51(12): 61-66.
[8] 张景晓, 徐凤生. P-集合的属性函数与P-信息融合的属性合取特征及应用[J]. 山东大学学报(理学版), 2015, 50(10): 19-26.
[9] 史开泉. P-增广矩阵与信息的智能动态发现-辨识[J]. 山东大学学报(理学版), 2015, 50(10): 1-12.
[10] 任雪芳, 张凌, 史开泉. 基数余-亏与逆P-增广矩阵[J]. 山东大学学报(理学版), 2015, 50(10): 13-18.
[11] 张凌, 任雪芳. 基数余-亏定理与数据外-内挖掘-分离[J]. 山东大学学报(理学版), 2015, 50(08): 90-94.
[12] 卢盛荣, 汤积华. 伸-缩数据动态生成与数据淹没-隐藏[J]. 山东大学学报(理学版), 2015, 50(05): 40-44.
[13] 汤积华,陈保会. 内逆P-信息智能融合与属性析取扩展关系[J]. 山东大学学报(理学版), 2014, 49(2): 89-92.
[14] 张凌1,汤积华1,史开泉2. 内P-信息融合与它的属性合取特征[J]. 山东大学学报(理学版), 2014, 49(2): 93-97.
[15] 闫立梅,徐凤生. P-信息的属性合取扩展-收缩特征与P-信息的智能发现[J]. 山东大学学报(理学版), 2014, 49(2): 98-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!