山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (6): 7-10.doi: 10.6040/j.issn.1671-9352.0.2017.286
张江悦,徐常青*
ZHANG Jiang-yue, XU Chang-qing*
摘要: 一个2-线性森林是指每个分支均为长至多为2的路的图。将图G的边集合划分为m个线性2-森林的最小整数m,称为图G的线性2-荫度,记作la2(G)。确定了mad(G)≤4的图的线性2-荫度的上界,若图G为mad(G)≤4的图,则la2(G)≤「Δ(G)/2+5(Δ(G)≡1,2(mod 4)); la2(G)≤「Δ(G)/2+4(Δ(G)≡0,3(mod 4))。
中图分类号:
[1] AKIYAMA J. Three developing topics in graph theory[D]. Tokyo: University of Tokyo, 1980. [2] AKIYAMA J, EXOO G, HARARY F. Covering and packing in graphs. III: Cyclic and acyclic invariants[J]. Mathematica Slovaca, 1980, 30(4):405-417. [3] AKIYAMA J, EXOO G, HARARY F. Covering and packing in graphs IV: Linear arboricity[J]. Networks, 1981, 11(1):69-72. [4] ENOMOTO H, PÉROCHE B. The linear arboricity of some regular graphs[J]. Journal of Graph Theory, 2010, 8(2):309-324. [5] GULDAN F. The linear arboricity of 10-regular graphs[J]. Mathematica Slovaca, 1986, 36(3):225-228. [6] WU J L. On the linear arboricity of planar graphs[J]. Journal of Graph Theory, 2015, 31(2):129-134. [7] LIH K W, TONG L D, WANG W F. The linear 2-arboricity of planar graphs[J]. Graphs & Combinatorics, 2003, 19(2):241-248. [8] 徐常青,安丽莎,杜亚涛.平面图线性2-荫度的一个上界[J]. 山东大学学报(理学版), 2014, 49(4): 38-40. XU Changqing, AN Lisha, DU Yatao. An upper bound on the linear 2-arboricity of planar graph[J]. Journal of Shandong University(Natural Science), 2014, 49(4):38-40. [9] WANG Y Q. Improved upper bound on the linear 2-arboricity of planar graphs[J]. Discrete in Mathematics, 2016, 339(1):39-45. [10] XU C Q, CHANG J J. The linear 2-arboricity of some planar graphs[J]. Ars Combinatoria, 2014, 114:223-227. [11] 吴建良. 图的最大平均度与线性萌度的关系[J]. 山东大学学报(理学版),2005,40(6):27-30. WU Jianliang. The relationship between the maximum average degree and the linear arboricity of a graph[J]. Journal of Shandong University(Natural Science), 2005, 40(6):27-30. [12] CHEN B L, FU H L, HUANG K C, et al. Decomposing graphs into forests of paths with size less than three[J]. Australasian Journal of Combinatorics, 1991, 3:55-73. [13] BERMOND J C, FOUQUET J L, HABIB M, et al. On linear k-arboricity[J]. Discrete Mathematics, 1984, 52(2):123-132. |
[1] | 潘文华,徐常青. 一类稀疏图的邻和可区别边色数[J]. 山东大学学报(理学版), 2017, 52(8): 94-99. |
[2] | 陈宏宇,张丽. 4-圈不共点的平面图的线性2-荫度[J]. 山东大学学报(理学版), 2017, 52(12): 36-41. |
[3] | 姚京京, 徐常青. 最大度为3或4的图的邻和可区别全染色[J]. 山东大学学报(理学版), 2015, 50(02): 9-13. |
[4] | 陈宏宇1, 张丽2. 不含弦5-圈和弦6-圈的平面图的线性2荫度[J]. 山东大学学报(理学版), 2014, 49(06): 26-30. |
[5] | 徐常青1,安丽莎1,杜亚涛2. 平面图线性2-荫度的一个上界[J]. 山东大学学报(理学版), 2014, 49(04): 38-40. |
[6] | 张欣1,徐兰2,刘桂真1. 稀疏图的k-森林染色[J]. J4, 2011, 46(4): 1-3. |
|