山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (6): 1-6.doi: 10.6040/j.issn.1671-9352.0.2017.524
• • 下一篇
卢博, 禄鹏
摘要: 引入并研究了复形的 FR-内射维数与 FR-平坦维数, 借助相应的余挠对得到了两个新的 Quillen 模型结构。
中图分类号:
[1] AVRAMOV L L, FOXBY H B. Homological dimensions of unbounded complexes[J]. Journal of Pure & Applied Algebra, 1991, 71(2/3):129-155. [2] CHRISTENSEN L W. Gorenstein dimensions[M]. Berlin: Springer-Verlag, 2000. [3] VELICHE O. Gorenstein projective dimension for complexes[J]. Transactions of the American Mathematical Society, 2006, 358(3):1257-1283. [4] ASADOLLAHI J, SALARIAN Sh. Cohomology theories based on Gorenstein injective modules[J]. Trans Amer Math Soc, 2006, 358(5): 2183-2203. [5] LIU Zhongkui, REN Wei. Transfer of Gorenstein dimensions of unbounded complexes along ring homomorphisms[J]. Comm. Algebra, 2014, 42(8): 3325-3338. [6] LU Bo, LIU Zhongkui. Relative injectivity and flatness of complexes[J]. Kodai Math J, 2013, 36(2): 343-362. [7] GARCÍA R J R. Covers and envelopes in the category of complexes of modules[M]. Chapman & Hall/CRC Press, 1999. [8] ENOCHS E E, OYONARTE L. Covers, envelopes and cotorsion theories[M]. New York: Nova Science Publishere, 2002. [9] COSTA D L. Parameterizing families of non-noetherian rings[J]. Comm Algebra, 1994, 22(10): 3997-4011. [10] MAO Lixin, DING Nanqing. Relative projective modules and relative injective modules[J]. Comm Algebra, 2006, 34(7): 2403-2418. [11] ZHOU Dexu. On n-coherent rings and(n, d)-rings[J]. Comm Algebra, 2004, 32(6): 2425-2441. [12] GILLESPIE J. The flat model structure on Ch(R)[J]. Trans Amer Math Soc, 2004, 356(8): 3369-3390. [13] VERDIER J L. Cat'egories D'eriv'ees[M]. Lecture Notes in Math, 569, Berlin: Springer-Verlag, 1977: 262-311. [14] 章璞. 三角范畴与导出范畴[M].北京:科学出版社, 2015:110-135. ZHANG Pu. Triangulated categories and derived categories[M]. Beijing: Science Press, 2015:110-135. [15] HOVEY M. Model categories[M]. Mathematical Surveys and Monographs, 63, Providence, RI: American Mathematical Society, 1999. [16] HOVEY M. Cotorsion pairs, model category structures, and representation theory[J]. Math Z, 2002, 241(3): 553-592. [17] YANG Gang, LIU Zhongkui. Cotorsion pairs and model structure on Ch(R)[J]. Proc Edinb Math Soc, 2011, 54(3): 783-797. [18] 任伟. 复形范畴与三角范畴中的相对同调维数[D].兰州:西北师范大学, 2013. REN Wei. Relative homological dimensions in the category of complexes and triangulated categories[D]. Lanzhou: Northwest Normal University, 2013. |
[1] | 陈文倩,张孝金,昝立博. Gorenstein代数上的倾斜模的个数[J]. 山东大学学报(理学版), 2018, 53(10): 14-16. |
[2] | 郭寿桃,王占平. 正合零因子下模的Gorenstein同调维数[J]. 山东大学学报(理学版), 2018, 53(10): 17-21. |
[3] | 杨春花. 关于复形的Gc-内射维数的一个注记[J]. 山东大学学报(理学版), 2017, 52(11): 82-86. |
[4] | 罗肖强,邢建民. Ding gr-内射模和Ding gr-平坦模[J]. 山东大学学报(理学版), 2017, 52(11): 87-91. |
[5] | 王小青,梁力. 强余挠模的忠实平坦余基变换[J]. 山东大学学报(理学版), 2017, 52(11): 92-94. |
[6] | 徐辉,赵志兵. 相对无挠模[J]. 山东大学学报(理学版), 2017, 52(8): 75-80. |
[7] | 陈秀丽,陈建龙. C-投射(内射,平坦)模与优越扩张[J]. 山东大学学报(理学版), 2017, 52(8): 85-89. |
[8] | 孙维昆,林汉兴. 单点扩张代数的表示维数[J]. 山东大学学报(理学版), 2016, 51(6): 85-91. |
[9] | 谢宗真,张孝金. 所有τ-刚性模是投射模的代数[J]. 山东大学学报(理学版), 2016, 51(2): 16-20. |
[10] | 程海霞,殷晓斌. Abelian范畴中Gorenstein内射对象[J]. 山东大学学报(理学版), 2016, 51(2): 79-84. |
[11] | 陈秀丽, 陈建龙. Hopf扩张下的余纯投射维数[J]. 山东大学学报(理学版), 2014, 49(10): 7-10. |
|