您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (8): 9-16.doi: 10.6040/j.issn.1671-9352.4.2018.100

• • 上一篇    下一篇

基于相似关系的不完备形式背景属性约简

李同军1,2,黄家文2,吴伟志1,2   

  1. 1.浙江海洋大学浙江省海洋大数据挖掘与应用重点实验室, 浙江 舟山 316022;2.浙江海洋大学数理与信息学院, 浙江 舟山 316022
  • 收稿日期:2018-04-15 出版日期:2018-08-20 发布日期:2018-07-11
  • 作者简介:李同军(1966— ), 男, 博士, 教授, 研究方向为粒计算、数据挖掘等. E-mail:ltj722@163.com
  • 基金资助:
    国家自然科学基金资助项目(61773349,61075120,61272021,61202206)

Attribute reduction of incomplete contexts based on similarity relations

LI Tong-jun1,2, HUANG Jia-wen, WU Wei-zhi1,2   

  1. 1. Key Laboratory of Oceanographic Big Data Mining &
    Application of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China;
    2. School of Mathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
  • Received:2018-04-15 Online:2018-08-20 Published:2018-07-11

摘要: 研究不完备形式背景的属性约简问题。通过比较对象间属性值的一致性, 定义了对象集上的一个相似关系, 进而定义了基于相似关系的粗糙近似算子, 利用目标集的粗糙集近似, 可以提取语义明确的决策规则。基于不完备形式背景中相似关系给出一种属性约简的概念, 研究了属性约简的判定定理, 给出了三类属性的特征刻画。 最后, 利用对象间的辨识属性, 给出了一种属性约简的方法, 并举例说明了方法的可行性。

关键词: 辨识属性, 属性约简, 不完备形式背景, 粗糙集

Abstract: The paper focuses on the attribute reduction of incomplete contexts. First, by comparing the values of the objects on each of the attributes, one kind of similarity relations is proposed in incomplete contexts, based on which decision rules with clear meaning can be revealed via rough approximation operators. Subsequently, one type of attribute reduction of incomplete contexts is defined, under which the similarity relations keep unchanged, some judgment theorems are given for attribute reduction, and different types of attributes for attribute reduction are characterized by the similarity relations. At last, by constructing a Boolean function with discernibility attributes among objects, an approach for attribute reduction is obtained, and an illustration example is taken to show the reliability of approach.

Key words: incomplete contexts, rough sets, discernibility attributes, attribute reduction

中图分类号: 

  • TP18
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Science, 1982, 11(5):341-356.
[2] ZADEH L A. Fuzzy sets and information granularity[C] // GUPTA N, RAGADE R, YAGER R R. Advances in Fuzzy Set Theory and Applications. North-Holland: World Scientific Publishing, 1979: 3-18.
[3] 李金海, 吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12. LI Jinhai, WU Weizhi. Granular computing approach for formal concept analysis and its research outlooks[J]. Journal of Shandong University(Natural Science), 2017, 52(7): 1-12.
[4] YAO J T, VAILAKOS A V, PEDRYCZ W. Granular computing: perspectives and challenges[J]. IEEE Transactions on Cybernetics, 2013, 43(6):1977-1989.
[5] EBENBACH D H, MOORE C F. Incomplete information, inferences, and individual differences: the case of environmental judgments[J]. Organizational Behavior and Human Decision Processes, 2000, 81(1):1-27.
[6] GRZYMALA-BUSSE J W. Character relations for incomplete data: a generalization of the indiscernibility relation[C]. Lecture Notes in Artificial Intelligence. Berlin: Springer, 2004.
[7] WANG Guoyin, GUAN Lihe, HU Feng. Rough set extensions in incomplete information systems[J]. Frontier of Electrical and Electronic Engineering in China, 2008, 3(4):399-405.
[8] YANG Xibei, YU Dongjun YANG Jingyu, et al. Difference relation based rough sets and negative rules in incomplete information systems[J]. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 2009, 17(5):649-665.
[9] KRYSZKIEWICZ M. Rough set approach to incomplete information systems[J]. Information Sciences, 1998, 112:39-49.
[10] LEUNG Yee, WU Weizhi, ZHANG Wenxiu. Knowledge acquisition in incomplete information systems: a rough set approach[J]. European Journal of Operational Research, 2006, 168(1):164-180.
[11] QIAN Yuhua, LIANG Jiye, LI Deyu, et al. Approximation reduction in inconsistent incomplete tables[J]. Knowledge-based Systems, 2010, 23:427-433.
[12] 胡明礼, 刘思峰. 不完全信息下概率决策的扩展粗糙集方法[J]. 山东大学学报(理学版), 2006, 41(6):93-98. HU Mingli, LIU Sifeng. An extended rough set methodology for probability decision analysis with incomplete information[J]. Journal of Shandong University(Natural Science), 2006, 41(6):93-98.
[13] GANTER B, WILLE R. Formal concept analysis, mathematical foundations[M]. Berlin: Springer, 1999.
[14] YAO Y Y. Concept lattices in rough set theory[C] // Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society. Berlin: Springer, 2004.
[15] DUNTSCH I, GEDIGA G. Modal-style operators in qualitative data analysis[C] // Proceedings of the 2002 IEEE International Conference on Data Mining. Berlin: Springer, 2002.
[16] SHAO Mingwen, ZHANG Wenxiu. Approximation in formal concept analysis[C] // Lecture Notes in Computer Science. Berlin: Springer, 2005.
[17] LI Tongjun, ZHANG Wenxiu. Rough approximations in formal contexts[C] // Proceedings of the Fourth International Conference on Machine Learning and Cybernetics. Berlin: Springer, 2005.
[18] BURMEISTER P, HOLZER R. On the treatment of incomplete knowledge in formal concept analysis[C] // GANTER B, MINEAU G W. Conceptual Structures: Logical, Linguistic, and Computational Issues. Berlin: Springer, 2000.
[19] HOLZER R. Knowledge acquisition under incomplete knowledge using methods from formal concept analysis: parts I and II[J]. Fundamenta Informaticae, 2004, 63(1):17-39, 41-63.
[20] LI Jinhai, MEI Changlin, LYU Yuejin. Incomplete decision contexts: approximation concept construction, rule acquisition and knowledge reduction[J]. International Journal of Approximate Reasoning, 2013, 54(1):149-165.
[21] LI Meizheng, WANG Guoyin. Approximate concept construction with three-way decisions and attribute reduction in incomplete contexts[J]. Knowledge-Based Systems, 2016, 91:165-178.
[22] WU Weizhi, ZHANG Wenxiu. Constructive and axiomatic approaches of fuzzy approximation operators[J]. Information Sciences, 2004, 159:233-254.
[23] 张文修, 梁怡, 吴伟志. 信息系统与知识发现[M]. 北京: 科学出版社, 2003. ZHANG Wenxiu, LIANG Yi, WU Weizhi. Information systems and knowledge discovery[M]. Beijing: Science Press, 2003.
[1] 左芝翠,张贤勇,莫智文,冯林. 基于决策分类的分块差别矩阵及其求核算法[J]. 山东大学学报(理学版), 2018, 53(8): 25-33.
[2] 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24.
[3] 李丽,管涛,林和. 基于泛系算子的泛系混合并联粗糙集模型[J]. 山东大学学报(理学版), 2017, 52(7): 22-29.
[4] 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36.
[5] 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104.
[6] 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103.
[7] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
[8] 翟俊海, 张垚, 王熙照. 相容粗糙模糊集模型[J]. 山东大学学报(理学版), 2014, 49(08): 73-79.
[9] 罗海燕, 吕萍, 刘林忠, 杨洵. 云环境下基于模糊粗糙AHP的企业信任综合评估[J]. 山东大学学报(理学版), 2014, 49(08): 111-117.
[10] 吴正江, 刘永利, 高岩. 拟单层覆盖上的覆盖粗糙集族[J]. 山东大学学报(理学版), 2014, 49(08): 6-14.
[11] 林姿琼, 王敬前, 祝峰. 矩阵方法计算覆盖粗糙集中最小、最大描述[J]. 山东大学学报(理学版), 2014, 49(08): 97-101.
[12] 石素玮, 李进金, 谭安辉. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(08): 86-91.
[13] 安秋生, 孔祥玉. 函数依赖与多值依赖的再研究[J]. 山东大学学报(理学版), 2014, 49(08): 1-5.
[14] 冯林1,2,罗芬3,方丹3,原永乐2. 基于改进扩展正域的属性核与属性约简方法[J]. J4, 2012, 47(1): 72-76.
[15] 张灵均,徐久成,李双群,李晓艳. 相斥邻域的覆盖粗糙集实值属性约简[J]. J4, 2012, 47(1): 77-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!