山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (8): 9-16.doi: 10.6040/j.issn.1671-9352.4.2018.100
李同军1,2,黄家文2,吴伟志1,2
LI Tong-jun1,2, HUANG Jia-wen, WU Wei-zhi1,2
摘要: 研究不完备形式背景的属性约简问题。通过比较对象间属性值的一致性, 定义了对象集上的一个相似关系, 进而定义了基于相似关系的粗糙近似算子, 利用目标集的粗糙集近似, 可以提取语义明确的决策规则。基于不完备形式背景中相似关系给出一种属性约简的概念, 研究了属性约简的判定定理, 给出了三类属性的特征刻画。 最后, 利用对象间的辨识属性, 给出了一种属性约简的方法, 并举例说明了方法的可行性。
中图分类号:
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Science, 1982, 11(5):341-356. [2] ZADEH L A. Fuzzy sets and information granularity[C] // GUPTA N, RAGADE R, YAGER R R. Advances in Fuzzy Set Theory and Applications. North-Holland: World Scientific Publishing, 1979: 3-18. [3] 李金海, 吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12. LI Jinhai, WU Weizhi. Granular computing approach for formal concept analysis and its research outlooks[J]. Journal of Shandong University(Natural Science), 2017, 52(7): 1-12. [4] YAO J T, VAILAKOS A V, PEDRYCZ W. Granular computing: perspectives and challenges[J]. IEEE Transactions on Cybernetics, 2013, 43(6):1977-1989. [5] EBENBACH D H, MOORE C F. Incomplete information, inferences, and individual differences: the case of environmental judgments[J]. Organizational Behavior and Human Decision Processes, 2000, 81(1):1-27. [6] GRZYMALA-BUSSE J W. Character relations for incomplete data: a generalization of the indiscernibility relation[C]. Lecture Notes in Artificial Intelligence. Berlin: Springer, 2004. [7] WANG Guoyin, GUAN Lihe, HU Feng. Rough set extensions in incomplete information systems[J]. Frontier of Electrical and Electronic Engineering in China, 2008, 3(4):399-405. [8] YANG Xibei, YU Dongjun YANG Jingyu, et al. Difference relation based rough sets and negative rules in incomplete information systems[J]. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 2009, 17(5):649-665. [9] KRYSZKIEWICZ M. Rough set approach to incomplete information systems[J]. Information Sciences, 1998, 112:39-49. [10] LEUNG Yee, WU Weizhi, ZHANG Wenxiu. Knowledge acquisition in incomplete information systems: a rough set approach[J]. European Journal of Operational Research, 2006, 168(1):164-180. [11] QIAN Yuhua, LIANG Jiye, LI Deyu, et al. Approximation reduction in inconsistent incomplete tables[J]. Knowledge-based Systems, 2010, 23:427-433. [12] 胡明礼, 刘思峰. 不完全信息下概率决策的扩展粗糙集方法[J]. 山东大学学报(理学版), 2006, 41(6):93-98. HU Mingli, LIU Sifeng. An extended rough set methodology for probability decision analysis with incomplete information[J]. Journal of Shandong University(Natural Science), 2006, 41(6):93-98. [13] GANTER B, WILLE R. Formal concept analysis, mathematical foundations[M]. Berlin: Springer, 1999. [14] YAO Y Y. Concept lattices in rough set theory[C] // Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society. Berlin: Springer, 2004. [15] DUNTSCH I, GEDIGA G. Modal-style operators in qualitative data analysis[C] // Proceedings of the 2002 IEEE International Conference on Data Mining. Berlin: Springer, 2002. [16] SHAO Mingwen, ZHANG Wenxiu. Approximation in formal concept analysis[C] // Lecture Notes in Computer Science. Berlin: Springer, 2005. [17] LI Tongjun, ZHANG Wenxiu. Rough approximations in formal contexts[C] // Proceedings of the Fourth International Conference on Machine Learning and Cybernetics. Berlin: Springer, 2005. [18] BURMEISTER P, HOLZER R. On the treatment of incomplete knowledge in formal concept analysis[C] // GANTER B, MINEAU G W. Conceptual Structures: Logical, Linguistic, and Computational Issues. Berlin: Springer, 2000. [19] HOLZER R. Knowledge acquisition under incomplete knowledge using methods from formal concept analysis: parts I and II[J]. Fundamenta Informaticae, 2004, 63(1):17-39, 41-63. [20] LI Jinhai, MEI Changlin, LYU Yuejin. Incomplete decision contexts: approximation concept construction, rule acquisition and knowledge reduction[J]. International Journal of Approximate Reasoning, 2013, 54(1):149-165. [21] LI Meizheng, WANG Guoyin. Approximate concept construction with three-way decisions and attribute reduction in incomplete contexts[J]. Knowledge-Based Systems, 2016, 91:165-178. [22] WU Weizhi, ZHANG Wenxiu. Constructive and axiomatic approaches of fuzzy approximation operators[J]. Information Sciences, 2004, 159:233-254. [23] 张文修, 梁怡, 吴伟志. 信息系统与知识发现[M]. 北京: 科学出版社, 2003. ZHANG Wenxiu, LIANG Yi, WU Weizhi. Information systems and knowledge discovery[M]. Beijing: Science Press, 2003. |
[1] | 左芝翠,张贤勇,莫智文,冯林. 基于决策分类的分块差别矩阵及其求核算法[J]. 山东大学学报(理学版), 2018, 53(8): 25-33. |
[2] | 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24. |
[3] | 李丽,管涛,林和. 基于泛系算子的泛系混合并联粗糙集模型[J]. 山东大学学报(理学版), 2017, 52(7): 22-29. |
[4] | 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36. |
[5] | 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104. |
[6] | 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103. |
[7] | 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104. |
[8] | 翟俊海, 张垚, 王熙照. 相容粗糙模糊集模型[J]. 山东大学学报(理学版), 2014, 49(08): 73-79. |
[9] | 罗海燕, 吕萍, 刘林忠, 杨洵. 云环境下基于模糊粗糙AHP的企业信任综合评估[J]. 山东大学学报(理学版), 2014, 49(08): 111-117. |
[10] | 吴正江, 刘永利, 高岩. 拟单层覆盖上的覆盖粗糙集族[J]. 山东大学学报(理学版), 2014, 49(08): 6-14. |
[11] | 林姿琼, 王敬前, 祝峰. 矩阵方法计算覆盖粗糙集中最小、最大描述[J]. 山东大学学报(理学版), 2014, 49(08): 97-101. |
[12] | 石素玮, 李进金, 谭安辉. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(08): 86-91. |
[13] | 安秋生, 孔祥玉. 函数依赖与多值依赖的再研究[J]. 山东大学学报(理学版), 2014, 49(08): 1-5. |
[14] | 冯林1,2,罗芬3,方丹3,原永乐2. 基于改进扩展正域的属性核与属性约简方法[J]. J4, 2012, 47(1): 72-76. |
[15] | 张灵均,徐久成,李双群,李晓艳. 相斥邻域的覆盖粗糙集实值属性约简[J]. J4, 2012, 47(1): 77-82. |
|