《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (11): 115-126.doi: 10.6040/j.issn.1671-9352.0.2019.358
• • 上一篇
王迎美1,王桢东2,李功胜1
WANG Ying-mei1, WANG Zhen-dong2, LI Gong-sheng1
摘要: 结合变指数全变差(totalvariation, TV)和整数阶TV,提出一种变分图像恢复算法。该变分问题的能量泛函主要分为三个部分:变指数p(x)的分数阶TV正则化项、整数阶TV正则化项和数据保真项。该模型中的指数p(x)是与图像的梯度信息有关的函数。在理论上,由于分数阶导数和整数阶导数的结合,使得所提方法不仅能有效地去除图像噪音,保护图像的边界高频信息,还能更好地保留图像的纹理细节等中低频信息,同时可以极大地消除图像处理中产生的阶梯效应和散斑效应。在模型的求解上,利用变分法可以简单地将极小化泛函的优化问题转化为梯度下降流方程。最后,通过模拟数据和真实数据对本文所提方法进行了验证。试验结果表明,该方法可以去除噪声的同时,有效保持边界和纹理细节,并且对噪声是鲁棒的,具有一定的实际应用价值。
中图分类号:
[1] JUNG M, BRESSON X, CHAN T F, et al. Nonlocal Mumford-Shah regularizers for color image restoration[J]. IEEE Transactions on Image Processing, 2011, 20(6):1583-1598. [2] TIKHONOV A N, ARSENIN V Y. Solutions of ill-posed problems[M]. New York: Wiley, 1977. [3] RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60(1/2/3/4):259-268. [4] YOU Yuli, XU Wenyuan, TANNENBAUM A, et al. Behavioral analysis of anisotropic diffusion in image processing[J]. IEEE Transactions on Image Processing, 1996, 5(11):1539-1553. [5] STRONG D M, CHAN T F. Edge-preserving and scale-dependent properties of total variation regularization[J]. Inverse Problems, 2003, 19(6):165-187. [6] NIKOLOVA M. Weakly constrained minimization: application to the estimation of images and signals-involving constant regions[J]. Journal of Mathematical Imaging and Vision, 2004, 21(2):155-175. [7] BLOMGREN P, CHAN T F, MULET P, et al. Total variation image restoration: numerical methods and extensions[C] // International Conference on Image Processing. New York: IEEE, 1997: 384-387. [8] BLOMGREN P, CHAN T F. Color TV: total variation methods for restoration of vector-valued images[J]. IEEE Transactions on Image Processing, 1998, 7(3):304-309. [9] CHEN Yunmei, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM Journal on Applied Mathematics, 2006, 66(4):1383-1406. [10] LI Fang, LI Zhibin, PI Ling. Variable exponent functionals in image restoration[J]. Applied Mathematics and Computation, 2010, 216(3):870-882. [11] NINNESS B. Estimation of 1/f noise[J]. IEEE Transactions on Information Theory, 1998, 44(1):32-46. [12] UNSER M. Splines, a perfect fit for signal and image processing[J]. IEEE Signal Processing Magazine, 1999, 16(6):22-38. [13] UNSER M, BLU T. Fractional splines and wavelets[J]. SIAM Review, 2000, 42(1):43-67. [14] CUESTA E, FINAT J. Image processing by means of a linear integro-differential equation[C] // International Conference Visualization, Imaging and Image Processing. Benalmadena, Spain: IASTED, 2003: 438-442. [15] DUITS R, FELSBERG M, FLORACK L. α scale spaces on a bounded domain[C] // International Conference on Scale Space Methods in Computer Vision. Berlin: Springer, 2003: 494-510. [16] DIDAS S, BURGETH B, IMIYA A, et al. Regularity and scale-space properties of fractional high order linear filtering[C] // International Conference on Scale Space Methods in Computer Vision. Berlin: Springer, 2005: 13-25. [17] BAI Jian, FENG Xiangchu. Fractional-order anisotropic diffusion for image denoising[J]. IEEE Transactions on Image Processing, 2007, 16(10):2492-2502. |
[1] | 方小珍,孙爱文,王敏,束立生. 广义多线性算子在变指数空间上的有界性[J]. 《山东大学学报(理学版)》, 2019, 54(4): 6-16. |
[2] | 陈丽珍,冯晓晶,李刚. 一类Schrödinger-Poisson系统非平凡解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 74-78. |
[3] | 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37. |
[4] | 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50. |
[5] | 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110. |
[6] | 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18. |
[7] | 马洁,潘振宽*,魏伟波,国凯. 含Euler弹性项图像修复变分模型的快速Split Bregman算法[J]. J4, 2013, 48(05): 70-77. |
[8] | 潘振宽,魏伟波,张海涛 . 基于梯度和拉普拉斯算子的图像扩散变分模型[J]. J4, 2008, 43(11): 11-16 . |
|