《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (12): 120-126.doi: 10.6040/j.issn.1671-9352.0.2018.607
• • 上一篇
陈雅文,熊向团*
CHEN Ya-wen, XIONG Xiang-tuan*
摘要: 讨论了一个不适定的抛物方程的非特征柯西问题,为了解决这个问题,采用了分数次Tikhonov正则化方法,并提出先验和后验两种参数选取规则下的稳定误差估计。
中图分类号:
[1] KLANN E, RAMLAU R. Regularization by fractional filter methods and data smoothing[R]. Vienna: Austrian Academy of Sciences, 2007. [2] HOCHSTENBACH M E, REICHEL L. Fractional Tikhonov regularization for linear discrete ill-posed problems[J]. BIT Numer Math, 2011, 51:197-215. [3] BIANCHI D, BUCCINI A, DONATELLI M, et al. Iterated fractional Tikhonov regularization[J]. Math NA, 2015, 31:1-34 arXiv:1412.6540v1. [4] ZHAO Jingjun, LIU Songshu, LIU Tao. A new regularization method for Cauchy problem of elliptic equation[J]. Complex Variables and Elliptic Equations, 2014, 59(9):1302-1314. [5] DINH Nho Hào, SCHNEIDER A, REINHARDT HYJ. Regularization of a non-characteristic Cauchy problem for a parabolic equation[J]. Inverse Problems, 1995, 11:1247-1263. [6] DINH Nho Hào. A mollification method for ill-posed problems[J]. Numer Math, 1994, 68:469-506. [7] DINH Nho Hào. A mollification method for a non-characteristic Cauchy problem for a parabolic equation[J]. J Math Anal Appl, 1996, 199:873-909. [8] XIONG Xiangtuan. A regularization method for a Cauchy problem of the Helmholtz equation[J]. J Comput Appl Math, 2010, 233:1723-1732. [9] DINH Nho Hào, NGUYEN Van Duc, LESNIC D. A non-local boundary value method for the Cauchy problem for elliptic equations[J]. Inverse Problems, 2009, 25: 1-27. doi:10.1088/0266-5611/25/5/055002. |
[1] | 王俊芳,赵培浩. 带有梯度超线性项抛物方程黏性解的比较原理[J]. 山东大学学报(理学版), 2018, 53(8): 77-83. |
[2] | 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24. |
[3] | 于金彪,任永强,曹伟东,鲁统超,程爱杰,戴涛. 可压多孔介质流的扩展混合元解法[J]. 山东大学学报(理学版), 2017, 52(8): 25-34. |
[4] | 宋萌萌,尚海锋. 具测度初值的非线性抛物方程组的Cauchy问题[J]. 山东大学学报(理学版), 2016, 51(10): 41-47. |
[5] | 刘洋,达朝究,李富明. Nehari流形在一类半线性抛物方程爆破中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 123-127. |
[6] | 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84. |
[7] | 吴志勤1,石东伟2. 带弱奇异核非线性积分微分方程的收敛性分析[J]. J4, 2012, 47(8): 60-63. |
[8] | 李娜,高夫征*,张天德. Sobolev方程的扩展混合体积元方法[J]. J4, 2012, 47(6): 34-39. |
[9] | 孟晓然1,石东伟2. 拟线性抛物问题各向异性R-T混合元分析[J]. J4, 2012, 47(2): 36-41. |
[10] | 于金彪1,2,席开华3*,戴涛2,鲁统超3,杨耀忠2,任永强3,程爱杰3. 两相多组分流有限元方法的收敛性[J]. J4, 2012, 47(2): 19-25. |
[11] | 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103-108. |
[12] | 金承日,于战华,曲荣宁. 解中立型时滞抛物方程的隐式差分格式[J]. J4, 2011, 46(8): 13-16. |
[13] | 乔保民,梁洪亮. 一类非线性广义神经传播方程Adini元的超收敛分析[J]. J4, 2011, 46(8): 42-46. |
[14] | 郑瑞瑞,孙同军. 一类线性Sobolev方程的迎风混合元方法[J]. J4, 2011, 46(4): 23-28. |
[15] | 张路寅,张玉海,钱坤明. 关于不适定问题的迭代Tikhonov正则化方法[J]. J4, 2011, 46(4): 29-33. |
|