您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (12): 120-126.doi: 10.6040/j.issn.1671-9352.0.2018.607

• • 上一篇    

抛物方程非特征柯西问题的分数次Tikhonov方法

陈雅文,熊向团*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2019-12-11
  • 作者简介:陈雅文(1995— ),女,硕士研究生,研究方向为微分方程数值解. E-mail:1718652639@qq.com*通信作者简介:熊向团(1977— ),男,博士后,教授,研究方向为微分方程数值解. E-mail:xiongxt@gmail.com
  • 基金资助:
    国家自然科学基金资助项目(11661072);西北师范大学科学计算创新团队项目(NWNU-LKQN-17-5)

Fractional Tikhonov method of a non-characteristic Cauchy problem for a parabolic equation

CHEN Ya-wen, XIONG Xiang-tuan*   

  1. College of Mathematics and Statistics Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2019-12-11

摘要: 讨论了一个不适定的抛物方程的非特征柯西问题,为了解决这个问题,采用了分数次Tikhonov正则化方法,并提出先验和后验两种参数选取规则下的稳定误差估计。

关键词: 不适定问题, 抛物方程, 分数次Tikhonov方法, 误差估计

Abstract: The ill-posed non-characteristic Cauchy problem for a parabolic equation is considered. A fractional Tikhonov regularization method is applied to solve the the problem. Some stability error estimates under for a-poriori and a-posteriori choice rules are given.

Key words: ill-posed problem, parabolic equation, fractional Tikhonov method, error estimation

中图分类号: 

  • O241.1
[1] KLANN E, RAMLAU R. Regularization by fractional filter methods and data smoothing[R]. Vienna: Austrian Academy of Sciences, 2007.
[2] HOCHSTENBACH M E, REICHEL L. Fractional Tikhonov regularization for linear discrete ill-posed problems[J]. BIT Numer Math, 2011, 51:197-215.
[3] BIANCHI D, BUCCINI A, DONATELLI M, et al. Iterated fractional Tikhonov regularization[J]. Math NA, 2015, 31:1-34 arXiv:1412.6540v1.
[4] ZHAO Jingjun, LIU Songshu, LIU Tao. A new regularization method for Cauchy problem of elliptic equation[J]. Complex Variables and Elliptic Equations, 2014, 59(9):1302-1314.
[5] DINH Nho Hào, SCHNEIDER A, REINHARDT HYJ. Regularization of a non-characteristic Cauchy problem for a parabolic equation[J]. Inverse Problems, 1995, 11:1247-1263.
[6] DINH Nho Hào. A mollification method for ill-posed problems[J]. Numer Math, 1994, 68:469-506.
[7] DINH Nho Hào. A mollification method for a non-characteristic Cauchy problem for a parabolic equation[J]. J Math Anal Appl, 1996, 199:873-909.
[8] XIONG Xiangtuan. A regularization method for a Cauchy problem of the Helmholtz equation[J]. J Comput Appl Math, 2010, 233:1723-1732.
[9] DINH Nho Hào, NGUYEN Van Duc, LESNIC D. A non-local boundary value method for the Cauchy problem for elliptic equations[J]. Inverse Problems, 2009, 25: 1-27. doi:10.1088/0266-5611/25/5/055002.
[1] 王俊芳,赵培浩. 带有梯度超线性项抛物方程黏性解的比较原理[J]. 山东大学学报(理学版), 2018, 53(8): 77-83.
[2] 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24.
[3] 于金彪,任永强,曹伟东,鲁统超,程爱杰,戴涛. 可压多孔介质流的扩展混合元解法[J]. 山东大学学报(理学版), 2017, 52(8): 25-34.
[4] 宋萌萌,尚海锋. 具测度初值的非线性抛物方程组的Cauchy问题[J]. 山东大学学报(理学版), 2016, 51(10): 41-47.
[5] 刘洋,达朝究,李富明. Nehari流形在一类半线性抛物方程爆破中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 123-127.
[6] 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84.
[7] 吴志勤1,石东伟2. 带弱奇异核非线性积分微分方程的收敛性分析[J]. J4, 2012, 47(8): 60-63.
[8] 李娜,高夫征*,张天德. Sobolev方程的扩展混合体积元方法[J]. J4, 2012, 47(6): 34-39.
[9] 孟晓然1,石东伟2. 拟线性抛物问题各向异性R-T混合元分析[J]. J4, 2012, 47(2): 36-41.
[10] 于金彪1,2,席开华3*,戴涛2,鲁统超3,杨耀忠2,任永强3,程爱杰3. 两相多组分流有限元方法的收敛性[J]. J4, 2012, 47(2): 19-25.
[11] 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103-108.
[12] 金承日,于战华,曲荣宁. 解中立型时滞抛物方程的隐式差分格式[J]. J4, 2011, 46(8): 13-16.
[13] 乔保民,梁洪亮. 一类非线性广义神经传播方程Adini元的超收敛分析[J]. J4, 2011, 46(8): 42-46.
[14] 郑瑞瑞,孙同军. 一类线性Sobolev方程的迎风混合元方法[J]. J4, 2011, 46(4): 23-28.
[15] 张路寅,张玉海,钱坤明. 关于不适定问题的迭代Tikhonov正则化方法[J]. J4, 2011, 46(4): 29-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!