您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (4): 116-126.doi: 10.6040/j.issn.1671-9352.0.2018.384

• • 上一篇    

(V, η)-I型对称不变凸多目标规划的对偶性

王雪峰,王芮婕,高晓艳   

  1. 西安科技大学理学院, 陕西 西安 710054
  • 发布日期:2019-04-08
  • 作者简介:王雪峰(1963— ),男,硕士,教授, 研究方向为最优化理论与算法. E-mail:376221255@qq.com
  • 基金资助:
    陕西省自然科学研究计划项目(2017JM1041);陕西省教育厅专项科研计划项目(15JK1456)

Duality in multiobjective programming under(V, η)-type I symmetrical invexity

WANG Xue-feng, WANG Rui-jie, GAO Xiao-yan   

  1. College of Science, Xian University of Science and Technology, Xian 710054, Shaanxi, China
  • Published:2019-04-08

摘要: 利用对称梯度,定义了一类新的广义不变凸函数:(V, η)-I型对称不变凸函数、(V, η)-I型对称严格拟不变凸函数以及(V, η)-I型对称严格拟伪不变凸函数,并在新广义凸性的假设下,研究了一类多目标规划问题的Mond-Weir型对偶,得到了这类多目标规划的若干个弱对偶定理、强对偶定理以及严格逆对偶定理。

关键词: (V, η)-I型对称不变凸函数, 多目标规划, 对称梯度, 对偶性

Abstract: By using symmetrical gradient, a class of new generalized invex function, (V, η)-type I symmetrical invex function,(V, η)-type I strictly symmetrical quasi invex function and(V, η)-type I strictly symmetrical quasiqseudo invex function are defined. Under the new generalized invexity, the Mond-Weir dual model in a class of multi-objective programming problem is discussed, and several weak duality results, strong duality result and strict converse duality result are obtained.

Key words: (V, η)-type symmetrical invex function, multiobjective programming, symmetrical gradient, duality

中图分类号: 

  • O221
[1] MANDAL P, NAHAK C. Symmetric duality with (p, r)-ρ-(η, θ)-invexity[J]. Applied Mathematics and Computation, 2011, 217(21):8141-8148.
[2] TRIPATHY A K, DEVI G. Wolfe type higher order multiple objective nondifferentiable symmetric dual programming with generalized invex function[J]. Journal of Mathematical Modelling and Algorithms in Operations Research, 2014, 13(4):557-577.
[3] 卢厚佐, 高英. 多目标分式规划逆对偶研究[J]. 数学的实践与认识, 2014, 44(23):172-178. LU Houzuo, GAO Ying. Converse duality for multiobjective fractional programming[J]. Mathematics in Practice and Theory, 2014, 44(23):172-178.
[4] BHATIA D, MEHRA A. Lagrange duality in multiobjective fractional programming problems with n-set functions[J]. Journal of Mathematical Analysis and Applications, 1999, 236(2):300-311.
[5] GAO X Y. Optimality and duality for non-smooth multiple objective semi-infinite programming[J]. Journal of Networks, 2013, 8(2):413-420.
[6] GUPTA S K, KAILEY N. Second-order multiobjective symmetric duality involving cone-bonvex functions[J]. Journal of Global Optimization, 2013, 55(1):125-140.
[7] HACHIMI M, AGHEZZAF B. Sufficiency and duality in differentiable multiobjective programming involving generalized type I functions[J]. Journal of Mathematical Analysis and Applications, 2004, 296(2):382-392.
[8] HANSON M A, RITA P N, SINGH C. Multiobjective programming under generalized type i invexity[J]. Journal of Mathematical Analysis and Applications, 2001, 261(2):562-577.
[9] GAO Xiaoyan. Two duality problems for a class of multiobjective fractional programming[J]. Computer Modelling & New Technologies, 2014, 18(10):151-157.
[10] GAO X Y. Second order duality in multiobjective programming with generalized convexity[J]. International Journal of Grid and Distributed Computing, 2014, 7(5):159-170.
[11] 赵洁. 一类不可微多目标规划的Mond-Weir型对偶[J]. 重庆师范大学学报(自然科学版), 2017, 34(3):1-5. ZHAO Jie. Mond-weir duality for a class of nondifferentiable multiobjective programming[J]. Journal of Chongqing Normal University(Natural Science), 2017, 34(3):1-5.
[12] 张庆祥. 一类广义I类不变凸半无限规划的对偶性[J]. 延安大学学报(自然科学版), 2003, 22(4):6-8. ZHANG Qingxiang. Duality for a class of semi-infinite programming under generalized type-I invexity[J]. Journal of Yanan University(Natural Science Edition), 2003, 22(4):6-8.
[13] 杨勇. Iε类半无限规划的最优性条件[J]. 西南师范大学学报(自然科学版), 2014, 39(3):45-48. YANG Yong. On optimality conditions for semi-infinite programming with type-Iε convexity[J]. Journal of Southwest China Normal University(Natural Science Edition), 2014, 39(3):45-48.
[1] 刘兵兵. 一类灰色二层线性多目标规划问题及其算法[J]. J4, 2012, 47(5): 122-126.
[2] 宿 洁, . 值型线性双层规划的共轭对偶及最优性条件[J]. J4, 2007, 42(10): 13-17 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘方圆,孟宪佳,汤战勇,房鼎益,龚晓庆. 基于smali代码混淆的Android应用保护方法Symbol`@@[J]. 山东大学学报(理学版), 2017, 52(3): 44 -50 .
[2] 廖祥文,张凌鹰,魏晶晶,桂林,程学旗,陈国龙. 融合时间特征的社交媒介用户影响力分析[J]. 山东大学学报(理学版), 2018, 53(3): 1 -12 .
[3] 顾沈明,陆瑾璐,吴伟志,庄宇斌. 广义多尺度决策系统的局部最优粒度选择[J]. 山东大学学报(理学版), 2018, 53(8): 1 -8 .
[4] 曹伟东,戴涛,于金彪,王晓宏,施安峰. 化学驱模型中压力方程的交替方向解法改进[J]. 山东大学学报(理学版), 2018, 53(10): 88 -94 .
[5] 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1 -12 .
[6] 孙建东,顾秀森,李彦,徐蔚然. 基于COAE2016数据集的中文实体关系抽取算法研究[J]. 山东大学学报(理学版), 2017, 52(9): 7 -12 .
[7] 叶晓鸣,陈兴蜀,杨力,王文贤,朱毅,邵国林,梁刚. 基于图演化事件的主机群异常检测模型[J]. 山东大学学报(理学版), 2018, 53(9): 1 -11 .
[8] 巫朝霞,王佳琪. 一种无线单频谱安全拍卖算法[J]. 《山东大学学报(理学版)》, 2018, 53(11): 51 -55 .
[9] 万鹏飞,高兴宝. 一种解多目标优化问题的基于分解的人工蜂群算法[J]. 山东大学学报 (理学版), 2018, 53(11): 56 -66 .
[10] 王鑫,左万利,朱枫彤,王英. 基于重要结点的社区发现算法[J]. 山东大学学报 (理学版), 2018, 53(11): 67 -77 .