您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (9): 36-42.doi: 10.6040/j.issn.1671-9352.0.2018.560

• • 上一篇    下一篇

基于重叠函数和分组函数的蕴涵分配性

张廷海,覃锋   

  1. 江西师范大学数学与信息科学学院, 江西 南昌 330022
  • 出版日期:2019-09-20 发布日期:2019-07-30
  • 作者简介:张廷海(1974— ),男,硕士,副教授,研究方向为模糊系统与控制. E-mail:tinghaizh@163.com
  • 基金资助:
    国家自然科学基金资助项目(61563020);江西省自然科学重点基金资助项目(20171ACB20010);江西省教育厅自然科学基金资助项目(60296)

Distributivity of fuzzy implications over additively generated overlap and grouping functions

ZHANG Ting-hai, QIN Feng   

  1. College of Mathematics and Informatics, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
  • Online:2019-09-20 Published:2019-07-30

摘要: 在模糊系统中,模糊蕴涵与某些特定的聚合函数(如三角模、三角余模、一致模、零模、半一致模、半t-算子等)间的分配性被广泛研究。作为两类特殊的聚合函数,重叠函数和分组函数因其在图像处理、分类和决策等方面的应用而被广泛关注。本文给出了有加法生成子对的重叠函数、分组函数与具有边界条件的二元函数满足蕴涵分配性方程I(O(x,y),z)=G(I(x,z),I(y,z))的充要条件,以及有加法生成子对的分组函数G1,G2和具有边界条件的二元函数I满足蕴涵分配性方程I(x,G1(y,z))=G2(I(x,y),I(x,z))的充要条件。

关键词: 模糊蕴涵, 重叠函数, 分组函数, 柯西函数方程, 分配性

Abstract: Among the researches of the fuzzy system, the distributivity between fuzzy implications and some special aggregation functions(e.g. t-norms, t-conorms, uninorms, t-operators, semi-uninorms and semi-t-operators)has been studied by many authors. Overlap functions and grouping functions have been followed with interest for their applications in image processing, classification problems and decision making based on fuzzy preference relations. In this paper, we give necessary and sufficient conditions for two distributivity equations I(O(x,y),z)=G(I(x,z),I(y,z)) and I(x,G1(y,z))=G2(I(x,y),I(x,z)), where O is an additively generated overlap function, G1 and G2 are additively generated grouping functions and I is a binary function satisfying boundary conditions.

Key words: fuzzy implication, overlap function, grouping function, Cauchy function equation, distributivity

中图分类号: 

  • O159
[1] BACZYNSKI M, JAYARAM B. Fuzzy implications[M]. Berlin: Springer, 2008.
[2] 杨丽,覃锋.构造模糊蕴涵的新序和方法[J].江西师范大学学报(自然科学版),2018,42(3):254-259. YANG Li, QIN Feng. The novel method of constructing fuzzy implications by ordinal sum[J]. Journal of Jiangxi Normal University(Natural Science), 2018, 42(3):254-259.
[3] BACZYNSKI M, JAYARAM B.(S,N)-and R-implications: a state-of-the-art survey[J]. Fuzzy Sets and Systems, 2008, 159(14):1836-1859.
[4] BACZYNSKI M, JAYARAM B. On the characterization of (S,N)-implications[J]. Fuzzy Sets and Systems, 2007, 158:1713-1727.
[5] FODOR J C. Contrapositive symmetry of fuzzy implications[J]. Fuzzy Sets and Systems, 1995, 69(2):141-156.
[6] JAYARAM B. On the law of importation (x∧y)→z≡x→(y→z) in fuzzy logic[J]. IEEE Transactions on Fuzzy Systems, 2008,16(1):130-144.
[7] MAS M, MONSERRAT M, TORRENS J. QL-implications versus D-implications[J]. Kybernetika, 2006, 42(3):351-366.
[8] DE BAETS B. Idempotent uninorms[J]. European Journal of Operational Research, 1999, 118(3):631-642.
[9] DIMURO G P, BEDREGAL B. On residual implications derived from overlap functions[J]. Information Sciences, 2015, 312:78-88.
[10] DIMURO G P, BEDREGAL B, SANTIAGO R H N. On(G,N)-implications derived from grouping functions[J]. Information Sciences, 2014, 379:1-17.
[11] BALASUBRAMANIAM J, RAO C J M. On the distributivity of implication operators over T and S norms[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(2):194-198.
[12] RUIZ-AGUILERA D, TORRENS J. Distributivity of strong implications over conjunctive and disjunctive uninorms[J]. Kybernetika, 2006, 42(3):319-336.
[13] RUIZ-AGUILERa D, TORRENS J. Distributivity of residual implications over conjunctive and disjunctive uninorms[J]. Fuzzy Sets and Systems, 2007, 158(1):23-37.
[14] QIN F, YANG L. Distributive equations of implications based on nilpotent triangular norms[J]. International Journal of Approximate Reasoning, 2010, 51(8):984-992.
[15] QIN F, BACZYNSKI M, XIE A F. Distributive equations of implications based on continuous triangular norms(I)[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(1):153-167.
[16] QIN F, YANG P C. On the distributive equations of implications based on a continuous t-norms and a continuous Archimedean t-conorm[C] // International Conference on Biomedical Engineering and Informatics. USA: IEEE, 2011: 2290-2294.
[17] QIN F, BACZYNSKI M. Distributive Equations of implications based on continuous triangular conorms(II)[J]. Fuzzy Sets and Systems, 2014, 240:86-102.
[18] QIAO J S, HU B Q. The distributive laws of fuzzy implications over overlap and grouping functions[J]. Information Sciences, 2018, 438:107-126.
[19] BUSTINCE H, PAGOLA M, MESIAR R, et al. Grouping, overlaps and generalized bientropic functions for fuzzy modeling of pairwise comparisons[J]. IEEE Transactions on Fuzzy Systems, 2012, 20:405-415.
[20] DIMURO G P, BEDREGAL B, BUSTINCE H, et al. On additive generators of overlap functions[J]. Fuzzy Sets and Systems, 2016, 287:76-96.
[21] DIMURO G P, BEDREGAL B, BUSTINCE H, et al. On additive generators of grouping functions[M] // LAURENT A, STRAUSS O, BOUCHON-MEUNIER B, et al. Information Processing and Management of Uncertainty in Knowledge-Based Information Science. Berlin: Springer, 2014, 444:252-261.
[1] 程亚菲,赵彬. 模糊蕴涵关于合取2-一致模满足输入律的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(8): 20-32.
[2] 刘晓,周红军. (O,N)-蕴涵及其刻画[J]. 《山东大学学报(理学版)》, 2019, 54(5): 99-111.
[3] 彭家寅. 剩余格上的落影模糊滤子[J]. 山东大学学报(理学版), 2018, 53(2): 52-64.
[4] 于俊红,周红军. (T,N)-蕴涵及其基本性质[J]. 山东大学学报(理学版), 2017, 52(11): 71-81.
[5] 韩亮,刘华文. 有限链上逻辑算子的分配性方程求解[J]. 山东大学学报(理学版), 2014, 49(2): 29-35.
[6] 李玲玲, 吴洪博*. BR0-分配性及其推广[J]. J4, 2012, 47(2): 93-97.
[7] 郝加兴,吴洪博. 基于非交换剩余格的模糊蕴涵滤子及其性质[J]. J4, 2010, 45(10): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟祥波1,张立东1,杜子平2. 均值-方差标准下带跳的保险公司投资与再保险策略[J]. 山东大学学报(理学版), 2014, 49(05): 36 -40 .
[2] 彭振华,徐义红*,涂相求. 近似拟不变凸集值优化问题弱有效元的最优性条件[J]. 山东大学学报(理学版), 2014, 49(05): 41 -44 .
[3] 胡明娣1,2,折延宏1,王敏3. L3*系统中逻辑度量空间的拓扑性质[J]. J4, 2010, 45(6): 86 -90 .
[4] 张京友,张培爱,钟海萍. 进化图论在知识型企业组织结构设计中的应用[J]. J4, 2013, 48(1): 107 -110 .
[5] 郭兰兰1,2,耿介1,石硕1,3,苑飞1,雷丽1,杜广生1*. 基于UDF方法的阀门变速关闭过程中的#br# 水击压强计算研究[J]. 山东大学学报(理学版), 2014, 49(03): 27 -30 .
[6] 史开泉. 信息规律智能融合与软信息图像智能生成[J]. 山东大学学报(理学版), 2014, 49(04): 1 -17 .
[7] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[8] 曾文赋1,黄添强1,2,李凯1,余养强1,郭躬德1,2. 基于调和平均测地线核的局部线性嵌入算法[J]. J4, 2010, 45(7): 55 -59 .
[9] 郭文鹃,杨公平*,董晋利. 指纹图像分割方法综述[J]. J4, 2010, 45(7): 94 -101 .
[10] 刘战杰1,马儒宁1,邹国平1,钟宝江2,丁军娣3. 一种新的基于区域生长的彩色图像分割算法[J]. J4, 2010, 45(7): 76 -80 .