《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (2): 17-27.doi: 10.6040/j.issn.1671-9352.0.2020.236
• • 上一篇
李敏1,2,3,杨亚锋1,2,3,雷宇4,李丽红1,2,3*
LI Min1,2,3, YANG Ya-feng1,2,3, LEI Yu4, LI Li-hong1,2,3*
摘要: 针对当前最优粒度选择算法对决策域动态变化带来的代价鲜有涉及的问题,引入可拓集方法,结合三支决策思想提出基于可拓域变化代价最小的最优粒度选择模型。首先由可拓评价法确定指标等级离散化数据表,以权重为粒子实施粒化,利用二元关系交算子构建粒层空间;其次融合三支决策划分三个域,基于三个域的动态变化确定可拓集的五个域;然后研究可拓域变化的度量方式,构建代价矩阵,由可拓域变化代价最小确定最优粒层。该模型综合考虑静态和动态特征,为最优粒度选择提供新的途径。最后以黑龙江省水资源承载力数据为例,验证模型的有效性。利用分类与回归树(classification and regression trees, CART)进行灵敏度分析。结果表明模型具有较好的可推广性。
中图分类号:
[1] 史进玲, 张倩倩, 徐久成. 多粒度决策系统属性约简的最优粒度选择[J]. 计算机科学, 2018, 45(2):152-156. SHI Jinling, ZHANG Qianqian, XU Jiucheng. Optimal granularity selection of attribute reduction in multi-granularity decision system[J]. Computer Science, 2018, 45(2):152-156. [2] 顾沈明, 陆瑾璐, 吴伟志, 等. 广义多尺度决策系统的局部最优粒度选择[J]. 山东大学学报(理学版), 2018, 53(8):1-8. GU Shenming, LU Jinlu, WU Weizhi, et al. Local optimal granularity selection of generalized multi-scale decision-making system[J]. Journal of Shandong University(Natural Science), 2018, 53(8):1-8. [3] 梁美社, 米据生, 侯成军, 等. 基于局部广义多粒度粗糙集的多标记最优粒度选择[J]. 模式识别与人工智能, 2019, 32(8):718-725. LIANG Meishe, MI Jusheng, HOU Chengjun, et al. Multi-label optimal granularity selection based on local generalized multi-granularity rough set[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(8):718-725. [4] XU Weihua, LI Wentao, ZHANG Xiaotao, et al. Generalized multi-granulation rough sets and optimal granularity selection[J]. Granular Computing, 2017, 2(4):271-288. [5] 吴伟志, 陈超君, 李同军, 等. 不协调多粒度标记决策系统最优粒度的对比[J]. 模式识别与人工智能, 2016, 29(12):1095-1103. WU Weizhi, CHEN Chaojun, LI Tongjun, et al. Comparison of optimal granularity of inconsistent multi-granularity marking decision system[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(12):1095-1103. [6] 廖淑娇, 朱清新, 梁锐. 测试代价受限下数据的属性和粒度选择方法[J]. 计算机工程与科学, 2018, 40(8):1468-1474. LIAO Shujiao, ZHU Qingxin, LIANG Rui. Data attribute and granularity selection method under test cost constraint[J]. Computer Engineering and Science, 2018, 40(8):1468-1474. [7] 铁文彦, 范敏, 李金海. 对象更新环境下的多粒度决策系统的最优粒度选择[J]. 计算机科学, 2018, 45(1):113-117, 121. TIE Wenyan, FAN Min, LI Jinhai. Optimal granularity selection of multi-granularity decision-making system under object renewal environment[J]. Computer Science, 2018, 45(1):113-117,121. [8] LIAO Shujiao, ZHU Qingxin, QIAN Yuhua, et al. Feature-granularity selection with variable costs for hybrid data[J]. Soft Computing, 2019, 23(24):13105-13126. [9] 顾沈明, 张昊, 吴伟志, 等. 多标记序决策系统中基于局部最优粒度的规则获取[J]. 南京大学学报(自然科学版), 2017, 53(6):1012-1022. GU Shenming, ZHANG Hao, WU Weizhi, et al. Rule acquisition based on local optimal granularity in multi-label order decision system[J]. Journal of Nanjing University(Natural Science), 2017, 53(6):1012-1022. [10] 陈丽芳, 代琪, 付其峰. 基于粒计算的极限学习机模型设计与应用[J]. 计算机科学, 2018, 45(10):59-63. CHEN Lifang, DAI Qi, FU Qifeng. Design and application of extreme learning machine model based on granular computing[J]. Computer Science, 2018, 45(10):59-63. [11] YANG Jie, WANG Guoyin, ZHANG Qinghua, et al. Optimal granularity selection based on cost-sensitive sequential three-way decision with rough fuzzy sets[J]. Knowledge-Based Systems, 2019, 163:131-144. [12] 张清华, 刘凯旋, 高满. 基于代价敏感的粗糙集近似集与粒度寻优算法[J]. 控制与决策, 2020, 35(9):2070-2080. ZHANG Qinghua, LIU Kaixuan, GAO Man. Research on approximate set of rough set and granularity optimization algorithm based on cost sensitivity[J]. Control and Decision, 2020, 35(9): 2070-2080. [13] ZHANG Xueqiu, ZHANG Qinghua, CHENG Yunlong, et al. Optimal scale selection by integrating uncertainty and cost-sensitive learning in multi-scale decision tables[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(5):1095-1114. [14] 杨春燕, 蔡文. 可拓学与矛盾问题智能化处理[J]. 科技导报, 2014, 32(36):15-20. YANG Chunyan, CAI Wen. Extenics and intelligent treatment of contradictions[J]. Science and Technology Herald, 2014, 32(36):15-20. [15] 项忠彪. 基于顾客满意度的创新产品动态管理机制研究[D]. 杭州:浙江大学, 2013. XIANG Zhongbiao. Research on dynamic management mechanism of innovative products based on customer satisfaction[D]. Hangzhou:Zhejiang University, 2013. [16] 赵燕伟, 朱芬, 桂方志, 等. 融合可拓关联函数的密度峰值聚类算法[J]. 小型微型计算机系统, 2019, 40(12):2512-2518. ZHAO Yanwei, ZHU Fen, GUI Fangzhi, et al. Density peak clustering algorithm based on extension correlation function[J]. Miniature Microcomputer System, 2019, 40(12):2512-2518. [17] 李桥兴, 杨春燕. 可拓集无量纲一维关联函数[J]. 系统工程, 2014, 32(11):154-158. LI Qiaoxing, YANG Chunyan. Dimensionless one-dimensional correlation function of extension set[J]. System Engineering, 2014, 32(11):154-158. [18] 付净, 聂方超, 刘虹, 等. 化工企业安全管理体系评估指标集的构建及实证分析[J]. 安全与环境工程, 2020, 27(1):126-132. FU Jing, NIE Fangchao, LIU Hong, et al. Construction and empirical analysis of evaluation index set of safety management system in chemical enterprises[J]. Safety and Environmental Engineering, 2020, 27(1):126-132. [19] 崔春生, 王梦冉, 王国成. 一种基于可拓学的电子商务内容推荐算法研究[J]. 运筹与管理, 2018, 27(6):75-81. CUI Chunsheng, WANG Mengran, WANG Guocheng. An E-commerce content recommendation algorithm based on extenics[J]. Operations Management, 2018, 27(6):75-81. [20] 鲁佳慧, 唐德善. 基于PSR和物元可拓模型的水资源承载力预警研究[J]. 水利水电技术, 2019, 50(1):58-64. LU Jiahui, TANG Deshan. Research on early warning of water resources carrying capacity based on PSR and matter-element extension model[J]. Water Resources and Hydropower Technology, 2019, 50(1):58-64. [21] 仇国芳, 王小宁. 基于三支决策的医院分级诊疗决策研究[J]. 河南师范大学学报(自然科学版), 2018, 46(3):106-111. QIU Guofang, WANG Xiaoning. Research on hospital grading diagnosis and treatment decision based on three-way decision[J]. Journal of Henan Normal University(Natural Science), 2018, 46(3):106-111. [22] 王洪伟, 吴家春, 蒋馥. 基于可拓集的决策模型研究[J]. 计算机科学, 2003(8):132-135. WANG Hongwei, WU Jiachun, JIANG Fu. Research on decision model based on extension set[J]. Computer Science, 2003(8):132-135. [23] 刘维. 基于可拓学的安全评价方法研究[D]. 淮南:安徽理工大学, 2013. LIU Wei. Research on safety evaluation method based on extenics[D]. Huainan:Anhui University of Science and Technology, 2013. [24] WANG Changzhong, HE Qiang, SHAO Mingwen, et al. A unified information measure for general binary relations[J]. Knowledge-Based Systems, 2017, 135(1):18-28. [25] 宋飞. 可拓分析法的朝阳市地下水质量评价[J]. 黑龙江水利科技, 2019, 47(2):63-66. SONG Fei. Evaluation of groundwater quality in Chaoyang City by extension analysis method[J]. Heilongjiang Water Resources Science and Technology, 2019, 47(2):63-66. [26] 方宇, 闵帆, 刘忠慧, 等. 序贯三支决策的代价敏感分类方法[J]. 南京大学学报(自然科学版), 2018, 54(1):148-156. FANG Yu, MIN Fan, LIU Zhonghui, et al. Cost-sensitive classification method of sequential decision-making[J]. Journal of Nanjing University(Natural Science), 2018, 54(1):148-156. |
[1] | 余鹰,吴新念,王乐为,张应龙. 基于标记相关性的多标记三支分类算法[J]. 《山东大学学报(理学版)》, 2020, 55(3): 81-88. |
[2] | 姬儒雅,魏玲,任睿思,赵思雨. 毕达哥拉斯模糊三支概念格[J]. 《山东大学学报(理学版)》, 2020, 55(11): 58-65. |
[3] | 刘国涛,张燕平,徐晨初. 一种优化覆盖中心的三支决策模型[J]. 山东大学学报(理学版), 2017, 52(3): 105-110. |
[4] | 张聪, 于洪. 一种三支决策软增量聚类算法[J]. 山东大学学报(理学版), 2014, 49(08): 40-47. |
[5] | 田海龙, 朱艳辉, 梁韬, 马进, 刘璟. 基于三支决策的中文微博观点句识别研究[J]. 山东大学学报(理学版), 2014, 49(08): 58-65. |
[6] | 张里博, 李华雄, 周献中, 黄兵. 人脸识别中的多粒度代价敏感三支决策[J]. 山东大学学报(理学版), 2014, 49(08): 48-57. |
[7] | 杜丽娜, 徐久成, 刘洋洋, 孙林. 基于三支决策风险最小化的风险投资评估应用研究[J]. 山东大学学报(理学版), 2014, 49(08): 66-72. |
|