《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (7): 82-90.doi: 10.6040/j.issn.1671-9352.1.2020.047
• • 上一篇
谭金源1,刁宇峰1,杨亮1,祁瑞华2,林鸿飞1
TAN Jin-yuan1, DIAO Yu-feng1, YANG Liang1, QI Rui-hua2, LIN Hong-fei1
摘要: 抽取式摘要可读性、准确性较差,生成式摘要存在连贯性、逻辑性的不足,此外2种摘要方法的传统模型对文本的向量表示往往不够充分、准确。针对以上问题,该文提出了一种基于BERT-SUMOPN模型的抽取-生成式摘要方法。模型通过BERT预训练语言模型获取文本向量,然后利用抽取式结构化摘要模型抽取文本中的关键句子,最后将得到的关键句子输入到生成式指针生成网络中,通过EAC损失函数对模型进行端到端训练,结合coverage机制减少生成重复,获取摘要结果。实验结果表明,BERT-SUMOPN模型在BIGPATENT专利数据集上取得了很好的效果,ROUGE-1和ROUGE-2指标分别提升了3.3%和2.5%。
中图分类号:
[1] 王凯祥.面向查询的自动文本摘要技术研究综述[J]. 计算机科学, 2018, 45(11A):12-16. WANG Kaixiang. Survey of query-oriented automatic summarization technology[J]. Computer Science, 2018, 45(11A):12-16. [2] HSU W T, LIN C K, LEE MY, et al. A unified model for extractive and abstractive summarization using inconsistency loss[EB/OL].(2018-05-16)[2020-05-18]. https://arxiv.org/abs/1805.06266. [3] LUHN H P. The automatic creation of literatureabstracts[J]. IBM Journal of Research and Development,1958,2(2):159-165. [4] 张迎,王中卿,王红玲. 基于篇章主次关系的单文档抽取式摘要方法研究[J]. 中文信息学报, 2019, 33(8):67-76. ZHANG Ying, WANG Zhongqing, WANG Hongling. Single document extractive summarization with satellite and nuclear relations[J]. Journal of Chinese Information Processing, 2019, 33(8):67-76. [5] 齐翌辰,王森淼,赵亚慧. 基于深度学习的中文抽取式摘要方法应用[J]. 科教导刊(中旬刊), 2019(14):67-70. QI Yichen, WANG Senmiao, ZHAO Yahui. Application of Chinese extractive abstraction method based on deep learning[J]. The Guide of Science & Education, 2019(14):67-70. [6] 艾丽斯,唐卫红,傅云斌,等. 抽取式自动文本生成算法[J]. 华东师范大学学报(自然科学版), 2018, 2018(4):70-79. AI Lisi, TANG Weihong, FU Yunbin, et al. An algorithm for natural language generation via text extracting[J]. Journal of East China Normal University(Natural Sciences), 2018, 2018(4):70-79. [7] NALLAPATI R, ZHAI F, ZHOU B. SummaRuNNer: a recurrent neural network based sequence model for extractive summarization of documents[C] //Thirty-first AAAI Conference on Artificial Intelligence. [S.l] : AAAI, 2017. [8] FANG Changjian, MU Dejun, DENG Zhenghong, et al. Word-sentence co-ranking for automatic extractive text summarization[J]. Expert Systems with Applications, 2017, 72:189-195. [9] ZHANG Y, ER M J, ZHAO R, et al. Multiview convolutional neural networks for multidocument extractive summarization[J]. IEEE Transactions on Cybernetics, 2016, 47(10):3230-3242. [10] 吴仁守,张宜飞,王红玲,等. 基于层次结构的生成式自动文摘[J]. 中文信息学报, 2019, 33(10):90-98. WU Renshou, ZHANG Yifei, WANG Hongling, et al. Abstractive summarization based on hierarchical structure[J]. Journal of Chinese Information Processing, 2019, 33(10):90-98. [11] 田珂珂,周瑞莹,董浩业,等. 基于编码器共享和门控网络的生成式文本摘要方法[J]. 北京大学学报(自然科学版), 2020,56(1):61-67. TIAN Keke, ZHOU Ruiying, DONG Haoye, et al. An abstractive summarization method based on encoder-sharing and gated network[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(1):61-67. [12] 张敏,曾碧卿,韩旭丽,等.DAPC:结合双注意力和指针覆盖的文本摘要模型[J]. 计算机工程与应用,2020,5(8):149-157. ZHANG Min, ZENG Biqing, HAN Xuli, et al. DAPC:dual attention and pointer-coverage network based summarization model[J]. Computer Engineering and Applications, 2020, 5(8):149-157. [13] CAO Ziqiang, WEI Furu, LI Wenjie, et al. Faithful to the original: fact aware neural abstractive summarization[C] //Thirty-second AAAI Conference on Artificial Intelligence. [S.l] : AAAI, 2018. [14] LIU Linqing, LU Yao, YANG Min, et al. Generative adversarial network for abstractive text summarization[C] //Thirty-second AAAI Conference on Artificial Intelligence. [S.l] : AAAI, 2018. [15] 吕瑞,王涛,曾碧卿,等. TSPT:基于预训练的三阶段复合式文本摘要模型[J]. 计算机应用研究,2020,37(10):2917-2921. LYU Rui, WANG Tao, ZENG Biqing, et al. TSPT: three-stage compound text summarization model based on pre-training[J]. Application Research of Computers, 2020, 37(10):2917-2921. [16] 邱俊. 基于强化学习的混合式文本摘要模型[J].信息技术与信息化, 2019(1):67-70. QIU Jun. Hybrid text summarization model based on reinforcement learning [J]. Information Technology and Informatization, 2019(1):67-70. [17] DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[EB/OL].(2018-10-11)[2020-05-18]. https://arxiv.org/abs/1810.04805. [18] LIU Y, TITOV I, LAPATA M. Single document summarization as tree induction[C] //Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies( Volume 1: Long and Short Papers). Minneapolis: ACL, 2019: 1745-1755. [19] SEE A, LIU P J, MANNING C D. Get to the point: summarization with pointer-generator networks[C] // Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). [S.l.] : ACL, 2017. [20] SHARMA E, LI C, WANG L. Bigpatent: a large-scale dataset for abstractive and coherent summarization[EB/OL].(2019-06-10)[2020-05-18]. https://arxiv.org/abs/1906.03741v1. [21] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[EB/OL].(2014-09-10)[2020-05-18]. https://arxiv.org/abs/1409.3215v3. [22] BOUTKAN F, RANZIJN J, RAU D, et al. Point-less: more abstractive summarization with pointer-generator networks[EB/OL].(2019-04-18)[2020-05-18]. https://arxiv.org/abs/1905.01975. [23] GEHRMANN S, DENG Y, RUSH AM. Bottom-up abstractive summarization[EB/OL].(2018-08-31)[2020-05-18]. https://arxiv.org/abs/1808.10792v2. [24] EDUNOV S, BAEVSKI A, AULI M. Pre-trained language model representations for language generation[EB/OL].(2019-03-22)[2020-05-18]. https://arxiv.org/abs/1903.09722v2. [25] SUBRAMANIAN S, LI R, PILAULT J, et al. On extractive and abstractive neural document summarization with transformer language models[EB/OL].(2019-09-07)[2020-05-18]. https://arxiv.org/abs/1909.03186. [26] CHEN Y C, BANSALM. Fast abstractive summarization with reinforce-selected sentence rewriting[EB/OL].(2018-05-28)[2020-05-18]. https://arxiv.org/abs/1805.11080v1. |
[1] | 许侃,刘瑞鑫,林鸿飞,刘海峰,冯娇娇,李家平,林原,徐博. 基于异质网络嵌入的学术论文推荐方法[J]. 《山东大学学报(理学版)》, 2020, 55(11): 35-45. |
[2] | 王佳麒,杨沐昀,赵铁军,赵臻宇. 检务文书检索数据集的构建[J]. 《山东大学学报(理学版)》, 2020, 55(7): 81-87. |
[3] | 庞博,刘远超. 融合pointwise及深度学习方法的篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 30-35. |
[4] | 杨艳,徐冰,杨沐昀,赵晶晶. 一种基于联合深度学习模型的情感分类方法[J]. 山东大学学报(理学版), 2017, 52(9): 19-25. |
[5] | 黄栋,徐博,许侃,林鸿飞,杨志豪. 基于词向量和EMD距离的短文本聚类[J]. 山东大学学报(理学版), 2017, 52(7): 66-72. |
[6] | 杜漫,徐学可,杜慧,伍大勇,刘悦,程学旗. 面向情绪分类的情绪词向量学习[J]. 山东大学学报(理学版), 2017, 52(7): 52-58. |
[7] | 曹蓉,黄金柱,易绵竹. 信息检索—DARPA人类语言技术研究的最终指向[J]. 山东大学学报(理学版), 2016, 51(9): 11-17. |
[8] | 奉国和,王丹迪,李媚婵. 基于SVD的档案学主题挖掘[J]. 山东大学学报(理学版), 2016, 51(1): 95-100. |
|