《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (7): 73-81.doi: 10.6040/j.issn.1671-9352.0.2020.496
• • 上一篇
周艳,张存华*
ZHOU Yan, ZHANG Cun-hua*
摘要: 考虑了具有集群行为的鱼群捕食者-食饵反应扩散系统。通过详细分析系统在唯一正常数平衡解处线性化系统的特征方程的根在复平面上的分布情况,讨论系统唯一正常数平衡解的局部渐近稳定性以及Turing不稳定性,并且利用MATLAB软件对所获得的理论结论进行了数值验证。
中图分类号:
[1] MURRAY J D. Mathematical biology Ⅱ[M]. Heidelberg: Springer-Verlag, 2002. [2] YI Fengqi, WEI Junjie, SHI Junping. Bifurcation and spatio-temporal patterns in a homogeneous diffusive predator-prey system[J]. Journal of Differential Equations, 2009, 246:1944-1977. [3] SONG Yongli, ZOU Xingfu. Bifurcation analysis of a diffusive ratio-dependent predator-prey model[J]. Nonlinear Dynam, 2014, 78:49-70. [4] SONG Yongli, PENG Yahong, ZOU Xingfu. Persistence, stability and Hopf bifurcation in a diffusive ratio-dependent predator-prey model with delay[J]. Int J Bifur Chaos, 2014, 24:1450093. [5] YUAN Sanling, XU Chaoqun, ZHANG Tonghua. Spatial dynamics in a predator-prey model with herd behavior[J]. Chaos, 2013, 23:0331023. [6] AJRALDI Valerio, PITTAVINO Marta, VENTURINO Ezio. Modeling herd behavior in population systems[J]. Nonlinear Anal, RWA, 2011, 12:2319-2333. [7] TANG Xiaosong, SONG Yongli. Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior[J]. Appl Math Comput, 2015, 254:375-391. [8] MANNA D, MAITI A, SAMANTA G P. Analysis of a predator-prey model for exploited fish populations with schooling behavior[J]. Appl Math Comput, 2018, 317:35-48. [9] JIANG Heping. Turing bifurcation in a diffusive predator-prey model with schooling behavior[J]. Appl Math Lette, 2019, 96:230-235. [10] 丁亚君,张存华. Lengyel-Epstein反应扩散系统的稳定性和Turing不稳定性[J]. 高校应用数学学报,2018,33:272-280. DING Yajun, ZHANG Cunhua. Stability ang Turing instability in a Lengyel-Epstein reaction-diffusion system[J]. Appl Math J Chinese Univ, 2018, 33:272-280. [11] YAN Xiang-ping, ZHANG Cun-hua. Stability and turing stability in a diffusive predator-prey system with Beddington-DeAngelis functional response[J]. Nonlinear Analysis: Real World Applications, 2014, 20(20):1-13. |
[1] | 朱彦兰,周伟,褚童,李文娜. 管理委托下的双寡头博弈的复杂动力学分析[J]. 《山东大学学报(理学版)》, 2021, 56(7): 32-45. |
[2] | 郭慧瑛,杨富霞,张翠萍. 有有限Ext-强Ding投射维数的模的稳定性[J]. 《山东大学学报(理学版)》, 2021, 56(4): 31-38. |
[3] | 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82. |
[4] | 阳忠亮, 郭改慧. 一类带有B-D功能反应的捕食-食饵模型的分支分析[J]. 《山东大学学报(理学版)》, 2020, 55(7): 9-15. |
[5] | 温晓,刘琪,高振,曾维新,吕咸青. 局部非侵入式约化基模型在瑞利-泰勒不稳定中的应用[J]. 《山东大学学报(理学版)》, 2020, 55(2): 109-117. |
[6] | 陈璐,张晓光. 一类自适应网络上的传染病模型研究[J]. 《山东大学学报(理学版)》, 2019, 54(9): 76-82. |
[7] | 王占平,袁恺英. 相对于余挠对的强Gorenstein内射模[J]. 《山东大学学报(理学版)》, 2019, 54(8): 102-107. |
[8] | 张瑜,赵仁育. Gorenstein FP-投射模及其稳定性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 79-85. |
[9] | 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38. |
[10] | 李翠平,高兴宝. 求解具有约束的l1-范数问题的神经网络模型[J]. 《山东大学学报(理学版)》, 2018, 53(12): 90-98. |
[11] | 冯孝周,徐敏,王国珲. 具有B-D反应项与毒素影响的捕食系统的共存解[J]. 《山东大学学报(理学版)》, 2018, 53(12): 53-61. |
[12] | 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24. |
[13] | 白宝丽,张建刚,杜文举,闫宏明. 一类随机的SIR流行病模型的动力学行为分析[J]. 山东大学学报(理学版), 2017, 52(4): 72-82. |
[14] | 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31. |
[15] | 薛文萍,纪培胜. 混合AQC函数方程在FFNLS上的HUR稳定性[J]. 山东大学学报(理学版), 2016, 51(4): 1-8. |
|