您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (8): 61-66.doi: 10.6040/j.issn.1671-9352.0.2021.097

• • 上一篇    

3-李代数T的齐性Rota-Baxter算子

白瑞蒲1,2,刘培1,2   

  1. 1.河北大学数学与信息科学学院, 河北 保定 071002;2. 河北省机器学习与智能计算重点实验室, 河北 保定 071002
  • 发布日期:2021-08-09
  • 作者简介:白瑞蒲(1960— ), 女, 博士, 教授, 研究方向为李群、李代数及多元李代数. E-mail:bairuipu@hbu.edu.cn
  • 基金资助:
    河北省自然科学基金资助项目(20182011126)

Homogeneous Rota-Baxter operators of 3-Lie algebra T

BAI Rui-pu1,2, LIU Pei1,2   

  1. 1. College of Mathematics and Information Science, Hebei University, Baoding 071002, Hebei, China;
    2. Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province, Baoding 071002, Hebei, China
  • Published:2021-08-09

摘要: 主要研究实数域F上典型Nambu 3-李代数T=∑l∈z≥1Fy sin(lx)∑r∈z≥0 Fz cos(rx)的权为1和权为0的齐性Rota-Baxter算子θ的结构, 其中θ满足存在两个整数集到F的可加映射α和β, 使得θ(y sin(lx))=α(l)y sin(lx), θ(z cos(rx))=β(r)z cos(rx)。证明了T上存在10种权为1的齐性Rota-Baxter算子, 存在4种权为0的齐性Rota-Baxter算子,并给出了每种算子的具体表达式。

关键词: 3-李代数, Rota-Baxter算子, 齐性Rota-Baxter算子

Abstract: Structure of homogeneous Rota-Baxter operators θ on the classical Nambu 3-Lie algebra T=∑l∈z≥1 Fy sin(lx)∑r∈z0Fz cos(rx)over the real field F of weight 1 and weight 0 is studied, where θ satisfies that there are two additive mappings α, β from the integers to F such that θ(y sin(lx))=α(l)y sin(lx), θ(z cos(rx))=β(r)z cos(rx). It is proved that there exist 10 non-zero homogeneous Rota-Baxter operators of weight 1, and 4 non-zero homogeneous Rota-Baxter operators of weight 0, and concrete expression of them are given.

Key words: 3-Lie algebra, Rota-Baxter operator, homogeneous Rota-Baxter operator

中图分类号: 

  • O152.5
[1] FILIPPOV V. n-Lie algebras[J]. Siberian Mathematical Journal, 1985, 26(6):126-140.
[2] MARMO G, VILASI G, VINOGRADOV A. The local structure of n-Poisson and n-Jacobi manifolds[J]. J Geom Phys, 1998, 25(1):141-182.
[3] NAMBU Y. Generalized Hamiltonian dynamics[J]. Physical Review D, 1973, 7(8):2405-2412.
[4] BAI Ruipu, GUO Li, LI Jiaqian, et al. Rota-Baxter 3-Lie algebras[J]. Journal of Mathematical Physics, 2013, 54(6):263-277.
[5] 白瑞蒲,吴婴丽, 侯帅. 8维3-李代数的Manin Triple[J]. 山东大学学报(理学版), 2019, 54(6):30-33. BAI Ruipu, WU Yingli, HOU Shuai. 8-dimensional Manin Triple of 3-Lie algebras[J]. Journal of Shandong University(Natural Science), 2019, 54(6):30-33.
[6] MANCHON D, PAYCHA S. Nested sums of symbols and renormalized multiple zeta values[J]. International Mathematics Research Notices, 2010(24):4628-4697.
[7] CARTIER P. On the structure of free baxter algebras[J]. Advances in Mathematics, 1972, 9(2):253-265.
[8] BAI Ruipu, MA Yue, KANG Chuangchuang. Structure on the simple canonical Nambu Rota-Baxter 3-Lie algebra Aω[J]. Bulletin of the Iranian Mathematical Society, 2019, 45(6):1659-1679.
[9] BAI Chengming, GUO Li, NI Xiang. Generalizations of the classical Yang-Baxter equation and O-operators[J]. Math Phys, 2011, 52(6):063515.
[1] 李芳淑,李林涵,张良云. 3-莱布尼兹代数及其Rota-Baxter算子的构造[J]. 《山东大学学报(理学版)》, 2020, 55(4): 48-53.
[2] 陆智颖,远继霞. 李超代数S(2)上的Rota-Baxter算子[J]. 《山东大学学报(理学版)》, 2020, 55(12): 40-48.
[3] 张倩,李萱,李歆,郑慧慧,李林涵,张良云. 由Sweedler四维Hopf代数构造Rota-Baxter代数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 47-52.
[4] 白瑞蒲,吴婴丽,侯帅. 8-维3-李代数的Manin Triple[J]. 《山东大学学报(理学版)》, 2019, 54(6): 30-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!