《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (8): 61-66.doi: 10.6040/j.issn.1671-9352.0.2021.097
• • 上一篇
白瑞蒲1,2,刘培1,2
BAI Rui-pu1,2, LIU Pei1,2
摘要: 主要研究实数域F上典型Nambu 3-李代数T=∑l∈z≥1Fy sin(lx)∑r∈z≥0 Fz cos(rx)的权为1和权为0的齐性Rota-Baxter算子θ的结构, 其中θ满足存在两个整数集到F的可加映射α和β, 使得θ(y sin(lx))=α(l)y sin(lx), θ(z cos(rx))=β(r)z cos(rx)。证明了T上存在10种权为1的齐性Rota-Baxter算子, 存在4种权为0的齐性Rota-Baxter算子,并给出了每种算子的具体表达式。
中图分类号:
[1] FILIPPOV V. n-Lie algebras[J]. Siberian Mathematical Journal, 1985, 26(6):126-140. [2] MARMO G, VILASI G, VINOGRADOV A. The local structure of n-Poisson and n-Jacobi manifolds[J]. J Geom Phys, 1998, 25(1):141-182. [3] NAMBU Y. Generalized Hamiltonian dynamics[J]. Physical Review D, 1973, 7(8):2405-2412. [4] BAI Ruipu, GUO Li, LI Jiaqian, et al. Rota-Baxter 3-Lie algebras[J]. Journal of Mathematical Physics, 2013, 54(6):263-277. [5] 白瑞蒲,吴婴丽, 侯帅. 8维3-李代数的Manin Triple[J]. 山东大学学报(理学版), 2019, 54(6):30-33. BAI Ruipu, WU Yingli, HOU Shuai. 8-dimensional Manin Triple of 3-Lie algebras[J]. Journal of Shandong University(Natural Science), 2019, 54(6):30-33. [6] MANCHON D, PAYCHA S. Nested sums of symbols and renormalized multiple zeta values[J]. International Mathematics Research Notices, 2010(24):4628-4697. [7] CARTIER P. On the structure of free baxter algebras[J]. Advances in Mathematics, 1972, 9(2):253-265. [8] BAI Ruipu, MA Yue, KANG Chuangchuang. Structure on the simple canonical Nambu Rota-Baxter 3-Lie algebra Aω[J]. Bulletin of the Iranian Mathematical Society, 2019, 45(6):1659-1679. [9] BAI Chengming, GUO Li, NI Xiang. Generalizations of the classical Yang-Baxter equation and O-operators[J]. Math Phys, 2011, 52(6):063515. |
[1] | 李芳淑,李林涵,张良云. 3-莱布尼兹代数及其Rota-Baxter算子的构造[J]. 《山东大学学报(理学版)》, 2020, 55(4): 48-53. |
[2] | 陆智颖,远继霞. 李超代数S(2)上的Rota-Baxter算子[J]. 《山东大学学报(理学版)》, 2020, 55(12): 40-48. |
[3] | 张倩,李萱,李歆,郑慧慧,李林涵,张良云. 由Sweedler四维Hopf代数构造Rota-Baxter代数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 47-52. |
[4] | 白瑞蒲,吴婴丽,侯帅. 8-维3-李代数的Manin Triple[J]. 《山东大学学报(理学版)》, 2019, 54(6): 30-33. |
|