《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (10): 44-49.doi: 10.6040/j.issn.1671-9352.0.2021.723
• • 上一篇
牛韶花,杨刚
NIU Shao-hua, YANG Gang
摘要: 设n是整数,T=(A 0U B)是形式三角矩阵环,其中A,B是环,U是左B右A双模,BU是投射模,UA的平坦维数有限。证明了若左T-模(M1M2)φM是n-Gorenstein投射模,则M1是(n-1)-Gorenstein投射左A-模,M2/Im(φM)是n-Gorenstein投射左B-模,并且 φM:U⊗AM1→M2是单射。反过来,若M1是n-Gorenstein投射左A-模,M2/Im(φM)是n-Gorenstein投射左B-模,并且 φM:U⊗AM1→M2是单射,则左T-模(M1M2)φM是n-Gorenstein投射模。
中图分类号:
[1] AUSLANDER M, BRIDGER M. Stable module theory[M]. [S.l.] : American Mathematical Society, 1969. [2] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220:611-633. [3] HAGHANY A, VARADARAJAN K. Study of modules over formal triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2000, 147(1):41-58. [4] ZHANG Pu. Gorenstein-projective modules and symmetric recollements[J]. Journal of Algebra, 2013, 388:65-80. [5] ENOCHS E E, CORTES-IZURDIAGA M, TORRECILLAS B. Gorenstein conditions over triangular matrixrings[J]. Journal of Pure and Applied Algebra, 2014, 218(8):1544-1554. [6] TANG Xi. Applications of n-Gorenstein projective and injective modules[J]. Hacettepe Journal of Mathematics and Statistics, 2015, 44(6):1435-1443. [7] GREEN E L. On the representation theory of rings in matrix form[J]. Pacific Journal of Mathematics, 1982, 100(1):123-138. [8] FOSSUM R M, GRIFFITH P, REITEN I. Trivial extensions of abelian categories: homological algebra of trivial extensions of abelian catergories with applications to ring theory[M]. [S.l.] : Springer, 2006. [9] ROTMAN J J. An introduction to homological algebra[M]. [S.l.] : Springer Science & Business Media, 2008. |
[1] | 杨银银,张翠萍. 形式三角矩阵环上的 Gorenstein FP-内射模[J]. 《山东大学学报(理学版)》, 2022, 57(2): 38-44. |
[2] | 吴德军,周慧. 三角矩阵环上Gorenstein FP-内射模的刻画[J]. 《山东大学学报(理学版)》, 2021, 56(8): 86-93. |
[3] | 赵阳,张文汇. 形式三角矩阵环上的强Ding投射模和强Ding内射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 37-45. |
[4] | 黄述亮. 形式三角矩阵环上导子的几个结果[J]. 山东大学学报(理学版), 2015, 50(10): 43-46. |
[5] | 马丽娜1,刘烁2*,王国俊1. 剩余格中的Fuzzy(P)滤子的结构[J]. J4, 2011, 46(3): 73-77. |
|