您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (10): 44-49.doi: 10.6040/j.issn.1671-9352.0.2021.723

• • 上一篇    

形式三角矩阵环上的n-Gorenstein投射模

牛韶花,杨刚   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 发布日期:2022-10-06
  • 作者简介:牛韶花(1996— ), 女, 硕士研究生, 研究方向为同调代数. E-mail:2537194227@qq.com
  • 基金资助:
    国家自然科学基金资助项目(12161049);兰州交通大学“百名青年优秀人才培养计划”基金资助项目;甘肃省自然科学基金资助项目(21JR7RA295)

n-Gorenstein projective modules over formal triangular matrix rings

NIU Shao-hua, YANG Gang   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2022-10-06

摘要: 设n是整数,T=(A 0U B)是形式三角矩阵环,其中A,B是环,U是左B右A双模,BU是投射模,UA的平坦维数有限。证明了若左T-模(M1M2)φM是n-Gorenstein投射模,则M1是(n-1)-Gorenstein投射左A-模,M2/ImM)是n-Gorenstein投射左B-模,并且 φM:U⊗AM1→M2是单射。反过来,若M1是n-Gorenstein投射左A-模,M2/ImM)是n-Gorenstein投射左B-模,并且 φM:U⊗AM1→M2是单射,则左T-模(M1M2)φM是n-Gorenstein投射模。

关键词: n-Gorenstein投射模, 形式三角矩阵环, 伴随对

Abstract: Let n be an integer, T=(A 0U B) a formal triangular matrix ring, where A and B are rings and U is a (B,A)-bimodule, BU is projective, UA has finite flat dimension. It is proved that, if a left T-module (M1M2)φM is n-Gorenstein projective, then M1 is (n-1)-Gorenstein projective in A-Mod, M2/Im(φM)is n-Gorenstein projective in B-Mod, and φM:U⊗AM1→M2 is a monomorphism. Conversely, if M1 is n-Gorenstein projective in A-Mod, M2/Im(φM) is n-Gorenstein projective in B-Mod, and φM:U⊗AM1→M2 is a monomorphism, then the left T-module (M1M2)φM is n-Gorenstein projective.

Key words: n-Gorenstein projective module, formal triangular matrix ring, adjoint pair

中图分类号: 

  • O154.2
[1] AUSLANDER M, BRIDGER M. Stable module theory[M]. [S.l.] : American Mathematical Society, 1969.
[2] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220:611-633.
[3] HAGHANY A, VARADARAJAN K. Study of modules over formal triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2000, 147(1):41-58.
[4] ZHANG Pu. Gorenstein-projective modules and symmetric recollements[J]. Journal of Algebra, 2013, 388:65-80.
[5] ENOCHS E E, CORTES-IZURDIAGA M, TORRECILLAS B. Gorenstein conditions over triangular matrixrings[J]. Journal of Pure and Applied Algebra, 2014, 218(8):1544-1554.
[6] TANG Xi. Applications of n-Gorenstein projective and injective modules[J]. Hacettepe Journal of Mathematics and Statistics, 2015, 44(6):1435-1443.
[7] GREEN E L. On the representation theory of rings in matrix form[J]. Pacific Journal of Mathematics, 1982, 100(1):123-138.
[8] FOSSUM R M, GRIFFITH P, REITEN I. Trivial extensions of abelian categories: homological algebra of trivial extensions of abelian catergories with applications to ring theory[M]. [S.l.] : Springer, 2006.
[9] ROTMAN J J. An introduction to homological algebra[M]. [S.l.] : Springer Science & Business Media, 2008.
[1] 杨银银,张翠萍. 形式三角矩阵环上的 Gorenstein FP-内射模[J]. 《山东大学学报(理学版)》, 2022, 57(2): 38-44.
[2] 吴德军,周慧. 三角矩阵环上Gorenstein FP-内射模的刻画[J]. 《山东大学学报(理学版)》, 2021, 56(8): 86-93.
[3] 赵阳,张文汇. 形式三角矩阵环上的强Ding投射模和强Ding内射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 37-45.
[4] 黄述亮. 形式三角矩阵环上导子的几个结果[J]. 山东大学学报(理学版), 2015, 50(10): 43-46.
[5] 马丽娜1,刘烁2*,王国俊1. 剩余格中的Fuzzy(P)滤子的结构[J]. J4, 2011, 46(3): 73-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!