《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (9): 101-110.doi: 10.6040/j.issn.1671-9352.0.2021.509
• • 上一篇
欧阳柏平
OUYANG Bai-ping
摘要: 研究了一类导数型非线性项的弱耦合半线性Moore-Gibson-Thompson(MGT)系统柯西问题解的爆破。通过构造辅助泛函,运用迭代技巧和泛函分析方法,得到了次临界情况下其柯西问题解的全局非存在性以及生命跨度的上界估计。
中图分类号:
[1] CRIGHTON D G. Model equations of nonlinear acoustics[J]. Annual Review of Fluid Mechanics, 1979, 11(1):11-33. [2] JORDAN P M. Nonlinear acoustic phenomena in viscous thermally relaxingfluids:shock bifurcation and the emergence of diffusive solitons[J]. The Journal of the Acoustical Society of America, 2008, 124(4):2491. [3] KALTENBACHER B, LASIECKA I, MARCHAND R. Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound[J]. Control and Cybernetics, 2011, 40(4):971-988. [4] ALVES M O, CAIXETA A H, SILVA M A J, et al. Moore-Gibson-Thompson equation with memory in a history framework: a semigroup approach[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2018, 69(4):106. [5] CAIXETA A H, LASIECKA I, DOMINGOS CAVALCANTI V N. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation[J]. Evolution Equations & Control Theory, 2016, 5(4):661-676. [6] LASIECKA I, WANG X. Moore-Gibson-Thompson equation with memory, Part I: exponential decay of energy[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2016, 67(2):17. [7] PELLICER M, SAID-HOUARI B. Well posedness and decay rates for the Cauchy problem of theMoore-Gibson-Thompson equation arising in high intensity ultrasound[J]. Applied Mathematics & Optimization, 2019, 80(2):447-478. [8] PELLICER M, SOLÀ-MORALES J. Optimal scalar products in the Moore-Gibson-Thompson equation[J]. Evolution Equations & Control Theory, 2019, 8(1):203-220. [9] DENG K. Blow-up of solutions of some nonlinear hyperbolic systems[J]. Rocky Mountain Journal of Mathematics, 1999, 29(3):807-820. [10] KUBO H, KUBOTA K, SUNAGAWA H. Large time behavior of solutions to semilinear systems of wave equations[J]. Mathematische Annalen, 2006, 335(2):435-478. [11] XU W. Blowup for systems of semilinear wave equations with small initial data[J]. Journal of Partial Differential Equations, 2004, 17(3):198-206. [12] CHEN W, PALMIERI A. A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case[J]. Evolution Equations & Control Theory, 2020. DOI:10.3934/eect.2020085. [13] AGEMI R, KUROKAWA Y H, TAKAMURA H. Critical curve for p-q systems of nonlinear wave equations in three space dimensions[J]. Journal of Differential Equations, 2000, 167(1):87-133. [14] DEL SANTO D, MITIDIERI E. Blow-up of solutions of a hyperbolic system: the critical case[J]. Differential Equations, 1998, 34(9):1157-1163. [15] KUROKAWA Y. The lifespan of radially symmetric solutions to nonlinear systems of odd dimensional wave equations[J]. Tsukuba Journal of Mathematics, 2005, 60(7):1239-1275. [16] KUROKAWA Y, TAKAMURA H. A weighted pointwise estimate for two dimensional wave equations and its application to nonlinear systems[J]. Tsukuba Journal of Mathematics, 2003, 27(2):417-448. [17] KUROKAWA Y, TAKAMURA H, WAKASA K. The blow-up and lifespan of solutions to systems of semilinear wave equation with critical exponents in high dimensions[J]. Differential Integral Equations, 2012, 25(3/4):363-382. [18] CHEN W H, PALMIERI A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case[J]. Discrete & Continuous Dynamical Systems, 2020, 40(9):5513-5540. [19] CHEN W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms[J]. Nonlinear Analysis, 2021, 202:112160. [20] CHEN W H, REISSIG M. Blow-up of solutions to Nakaos problem via an iteration argument[J]. Journal of Differential Equations, 2021, 275:733-756. [21] CHEN W H, PALMIERI A. Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2019, 70(2):67. [22] LAI N A, TAKAMURA H, WAKASA K. Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent[J]. Journal of Differential Equations, 2017, 263(9):5377-5394. [23] PALMIERI A, TAKAMURAH. Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities[J]. Nonlinear Analysis, 2019, 187:467-492. [24] YORDANOV B T, ZHANG Q S. Finite time blow up for critical wave equations in high dimensions[J]. Journal of Functional Analysis, 2006, 231(2):361-374. [25] LAI N A, TAKAMURA H. Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glasseys conjecture[J]. Differential and Integral Equations, 2019, 32(1/2):37-48. |
[1] | 段对花,高承华,王晶晶. 一类k-Hessian方程爆破解的存在性和不存在性[J]. 《山东大学学报(理学版)》, 2022, 57(3): 62-67. |
[2] | 孟希望,王娟. de Sitter时空中波动方程初值问题解的爆破[J]. 《山东大学学报(理学版)》, 2020, 55(6): 64-75. |
[3] | 董莉. 两类非线性波动方程解的爆破时间的下确界[J]. 山东大学学报(理学版), 2017, 52(4): 56-60. |
[4] | 刘洋,达朝究,李富明. Nehari流形在一类半线性抛物方程爆破中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 123-127. |
[5] | 吕红杰, 刘静静, 齐静, 刘硕. 弱耗散μ-Hunter-Saxton方程的爆破[J]. 山东大学学报(理学版), 2015, 50(05): 55-59. |
[6] | 林春进1,徐国静2. 高维Kaniadakis-Quarati 方程的有限时间爆破[J]. 山东大学学报(理学版), 2014, 49(06): 79-84. |
[7] | 宋丹丹,原保全*. 可压缩磁流体方程组的显式爆破解[J]. J4, 2012, 47(2): 26-30. |
[8] | 代丽美. 完全非线性一致椭圆方程的边界爆破问题[J]. J4, 2011, 46(6): 34-36. |
[9] | 阎小丽,原保全*. 欧拉方程的显式爆破解[J]. J4, 2011, 46(12): 104-107. |
[10] | 李凤萍. 三维广义磁流体方程组解的爆破准则[J]. J4, 2010, 45(4): 90-94. |
[11] | 陆求赐1,曾有栋2. 非局部波动方程组解的半无界问题[J]. J4, 2010, 45(10): 104-108. |
|