《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (11): 155-159.doi: 10.6040/j.issn.1671-9352.0.2022.095
Ligong WANG1(),Zhiming YU1,*(),Feng ZHOU2,Lijie TAO1,Luqi XING3
摘要:
定义了两类新图q * Kn与K1, m ·(q * Kn)。利用粘接图的特征多项式性质得到了这两类图的特征多项式,并刻画了这两类图为整图的含参数充要条件,进而也给出了它们为整图的一些充分条件。
中图分类号:
1 | HARARY F, SCHWENK A J. Which graphs have integral spectra[M]//Graphs and Combinatorics. Berlin: Springer, 1973: 18-22. |
2 | 李学良, 林国宁. 关于整树问题[J]. 科学通报, 1987, 32 (11): 813- 816. |
LI Xueliang , LIN Guoning . On integral trees problems[J]. Kexue Tongbao (Chinese), 1987, 32 (11): 813- 816. | |
3 | BALIŃSKA K , CVETKOVIĆ D , RADOSAVLJEVIĆ Z , et al. A survey on integral graphs[J]. Publikacije Elektrotehnickog Fakulteta-Serija: Matematika, 2002, (13): 42- 65. |
4 | WANG Ligong. Integral trees and integral graphs[D]. Enschede: University of Twente, 2005. |
5 | CVETKOVIĆ D, ROWLINSON P, SIMIĆ S. An introduction to the theory of graph spectra[M]//New York: Cambridge University Press, 2010. |
6 |
GHORBANI E , MOHAMMADIAN A , TAYFEH-REZAIE B . Integral trees of odd diameters[J]. Journal of Graph Theory, 2012, 70 (3): 332- 338.
doi: 10.1002/jgt.20619 |
7 | WANG Ligong , WANG Qi , HUO Bofeng . Integral trees with diameter four[J]. Applied Mathematics and Computation, 2016, (282): 53- 64. |
8 |
GHORBANI E , MOHAMMADIAN A , TAYFEH-REZAIE B . Integral trees with given nullity[J]. Discrete Mathematics, 2016, 339 (1): 157- 164.
doi: 10.1016/j.disc.2015.08.007 |
9 |
WANG Ligong , LI Xueliang , ZHANG Shenggui . Construction of integral graphs[J]. Applied Mathematics-A Journal of Chinese Universities, 2000, 15 (3): 239- 246.
doi: 10.1007/s11766-000-0046-z |
10 |
BAPAT R B , KARIMI M . Integral complete multipartite graphs[J]. Linear Algebra and its Applications, 2018, 549, 1- 11.
doi: 10.1016/j.laa.2018.03.026 |
11 |
DE LIMA L S , MOHAMMADIAN A , OLIVEIRA C S . On integral graphs with at most two vertices of degree larger than two[J]. Linear Algebra and its Applications, 2020, 584, 164- 184.
doi: 10.1016/j.laa.2019.09.019 |
12 |
GORYAINOV S , KONSTANTINOVA E V , LI Honghai , et al. Integral graphs obtained by dual Seidel switching[J]. Linear Algebra and its Applications, 2020, 604, 476- 489.
doi: 10.1016/j.laa.2020.07.010 |
13 |
BRAGA R O , DEL-VECCHIO R R , RODRIGUES V M . Integral unicyclic graphs[J]. Linear Algebra and its Applications, 2021, 614, 281- 300.
doi: 10.1016/j.laa.2020.05.002 |
14 |
HUANG Jing , LI Shuchao . Integral and distance integral Cayley graphs over generalized dihedral groups[J]. Journal of Algebraic Combinatorics, 2021, 53 (4): 921- 943.
doi: 10.1007/s10801-020-00948-1 |
15 |
KONSTANTINOVA E V , LYTKINA D . Integral Cayley graphs over finite groups[J]. Algebra Colloquium, 2020, 27 (1): 131- 136.
doi: 10.1142/S1005386720000115 |
16 |
BAŠIĆ M . Characterization of strongly regular integral circulant graphs by spectral approach[J]. Applicable Analysis and Discrete Mathematics, 2022, 16 (2): 288- 306.
doi: 10.2298/AADM180713023B |
17 |
CHENG Tao , FENG Lihua , LIU Weijun , et al. Distance powers of integral Cayley graphs over dihedral groups and dicyclic groups[J]. Linear and Multilinear Algebra, 2022, 70 (7): 1281- 1290.
doi: 10.1080/03081087.2020.1758609 |
18 | LEPOVIĆ M . On integral graphs which belong to the class αGa∪βGb where Ga and Gbare two regular integral graphs[J]. Discrete Mathematics, 2023, 346 (5): 1- 11. |
19 |
ARSIĆ B , CVETKOVIĆ D , SIMIĆ S K , et al. Graph spectral techniques in computer sciences[J]. Applicable Analysis and Discrete Mathematics, 2012, 6 (1): 1- 30.
doi: 10.2298/AADM111223025A |
20 |
GODSIL C D , MCKAY B D . Constructing cospectral graphs[J]. Aequationes Mathematicae, 1982, 25 (1): 257- 268.
doi: 10.1007/BF02189621 |
21 | BIGGS N . Algebraic graph theory[M]. New York: Cambridge University Press, 1993. |
[1] | 常乐,魏宗田. 基于邻域连通度优化的图的N[S]-T重构[J]. 《山东大学学报(理学版)》, 2023, 58(6): 40-45, 76. |
[2] | 王冉冉,文飞,张树成. 一类图的广义特征多项式[J]. 《山东大学学报(理学版)》, 2023, 58(11): 165-174. |
[3] | 索孟鸽,陈京荣,张娟敏. 笛卡尔乘积图的k-路点覆盖[J]. 《山东大学学报(理学版)》, 2022, 57(12): 103-110. |
[4] | 张苗,强晶晶,高瑞梅. Dn型通有构形的特征多项式[J]. 《山东大学学报(理学版)》, 2022, 57(10): 106-110. |
[5] | 杨影,李沐春,张友. 剖分Q-邻接冠图的广义特征多项式及其应用[J]. 《山东大学学报(理学版)》, 2021, 56(7): 65-72. |
[6] | 张生桂,陈祥恩. 近完全图的点可区别Ⅰ-全染色及Ⅵ-全染色[J]. 《山东大学学报(理学版)》, 2021, 56(5): 23-25. |
[7] | 贾淑香,邓波,冶成福,付凤,陈辉龙. 图的Resolvent Estrada指标的上(下)界刻画[J]. 《山东大学学报(理学版)》, 2020, 55(4): 92-96. |
[8] | 高瑞梅,李喆. 简单相连多边形对应的图构形的特征多项式[J]. 山东大学学报(理学版), 2016, 51(10): 72-77. |
[9] | 高瑞梅1,裴东河2. 构形的特征多项式和超可解性的算法[J]. 山东大学学报(理学版), 2014, 49(2): 51-57. |
[10] | 卢世芳1,卫良2,赵海兴2. 完全3-部图的无符号Laplace谱[J]. J4, 2012, 47(12): 41-46. |
[11] | 曹海松,伍俊良 . 矩阵特征值在椭圆形区域上的估计[J]. J4, 2012, 47(10): 49-53. |
[12] | 袁秀华. 完全图的全符号控制数[J]. J4, 2010, 45(8): 43-46. |
[13] | 张爽,裴东河,高瑞梅. 广义p-通有中心平行构形[J]. J4, 2010, 45(8): 32-35. |
[14] | 崔秀鹏 裴东河 高瑞梅. S2球构形的分类及一类特殊球构形的特征多项式[J]. J4, 2010, 45(2): 10-13. |
[15] | 袁秀华. 图的符号边全控制数[J]. J4, 2009, 44(8): 21-24. |
|