《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (2): 33-43.doi: 10.6040/j.issn.1671-9352.0.2022.200
• • 上一篇
胡德胜,阿布都卡的·吾甫*
HU De-sheng, Abdukadir OBUL*
摘要: 给出了modified Ringel-Hall代数中不可分解复形同构类之间的所有拟交换关系,证明了这些拟交换关系之集是B2-型modified Ringel-Hall代数的一个极小Gröbner-Shirshov基。作为一个应用,得到了B2-型modified Ringel-Hall代数的一组PBW基。
中图分类号:
[1] RINGEL C M. Hall algebras and quantum groups[J]. Inventiones Mathematicae, 1990, 101(1):583-591. [2] RINGEL C M. Hall algebra revisited[C] //Israel Math Conf Proc. Jerusalem: Weizmann Sci Press, 1993: 171-176. [3] GREEN J A. Hall algebras, hereditary algebras and quantum groups[J]. Inventiones Mathematicae, 1995, 120(1):361-377. [4] XIAO J. Drinfeld double and ringel-green theory of Hall algebras[J]. Journal of Algebra, 1997, 190(1):100-144. [5] TOËN B. Derived Hall algebras[J]. Duke Mathematical Journal, 2006, 135(3):587-615. [6] XIAO J, XU F. Hall algebras associated to triangulated categories[J]. Duke Mathematical Journal, 2008,143(2):353-373. [7] BRIDGELAND T. Quantum groups via Hall algebras of complexes[J]. Annals of Mathematics, 2013, 177(2):739-759. [8] YANAGIDA S. A note on Bridgelands Hall algebra of two-periodic complexes[J]. Mathematische Zeitschrift, 2016, 282(3/4):973-991. [9] ZHANG H C. A note on Bridgelands Hall algebras[J]. Communications in Algebra, 2018, 46(6):2551-2560. [10] LIN J, PENG L G. Modified Ringel-Hall algebras, Greens formula and derived Hall algebras[J]. Journal of Algebra, 2019, 526:81-103. [11] BUCHBERGER B. An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal(in German)[D]. Austria: University of Innsbruck, 1965. [12] SHIRSHOV A I. Some algorithmic problem for Lie algebras[J]. Sibirsk Mat Z, 1962, 3(2):292-296. [13] BERGMAN G M. The diamond lemma for ring theory[J]. Advances in Mathematics, 1978, 29(2):178-218. [14] BOKUT L, MALCOLMSON P. Gröbner-Shirshov bases for quantum enveloping algebras[J]. Israel Journal of Mathematics, 1996, 96(1):97-113. [15] BOKUT L A, CHEN Y Q, SHUM K P. Some new results on Gröbner-Shirshov bases[C] //Proceedings of the International Conference on Algebra 2010. Gadjah Mada: World Scientific, 2011: 53-102. [16] HUBERY A. From triangulated categories to Lie algebras: a theorem of Peng and Xiao[C] //Trends in representation theory of algebras and related topics, Contemp Math, Vol 406. Providence: [s.n.] , 2006. [17] HAPPEL D. Triangulated categories in the representation of finite dimensional algebras[M]. Cambridge: Cambridge University Press, 1988. [18] SEVENHANT B, VAN DEN BERGH M. On the double of the Hall algebra of a quiver[J]. Journal of Algebra, 1999, 221(1):135-160. [19] RINGEL C M. Representations of K-species and bimodules[J]. Journal of Algebra, 1976, 41(2):269-302. [20] RINGEL C M. PBW-bases of quantum groups[J]. J Reine Angew Math, 1996, 470:51-88. [21] 王云霞,阿布都卡的·吾甫. B2-型导出Hall代数的Gröbner-Shirshov基[J].中国科学:数学,2022,52(3):245-256. WANG Yunxia, OBUL A. Gröbner-Shirshov basis of derived Hall algebra of type B2[J]. Scientia Sinica Mathematica, 2022, 52(3):245-256. |
[1] | 何钰星,阿布都卡的·吾甫. B2-型量子群的不可约模的Gröbner-Shirshov对[J]. 《山东大学学报(理学版)》, 2020, 55(8): 28-37. |
[2] | 古丽沙旦木·玉奴斯,阿布都卡的·吾甫. 广义逆的Gröbner-Shirshov基方法[J]. 《山东大学学报(理学版)》, 2020, 55(4): 54-57. |
[3] | 木娜依木·迪里夏提,阿布都卡的·吾甫. A型退化仿射Hecke代数的Gröbner-Shirshov基[J]. 《山东大学学报(理学版)》, 2019, 54(2): 106-110. |
[4] | 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17. |
[5] | 高珍珍, 杨士林, 阿布都卡的·吾甫. Anick分解和量子群Uq(sl2)的一些同调性质[J]. 山东大学学报(理学版), 2014, 49(10): 17-27. |
|