您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (2): 33-43.doi: 10.6040/j.issn.1671-9352.0.2022.200

• • 上一篇    

B2-型modified Ringel-Hall代数的Gröbner-Shirshov基

胡德胜,阿布都卡的·吾甫*   

  1. 新疆大学数学与系统科学学院, 新疆 乌鲁木齐 830046
  • 发布日期:2023-02-12
  • 作者简介:胡德胜(1995— ),男,硕士研究生,研究方向为代数表示论、量子群及Gröbner-Shirshov基理论. E-mail:2318726727@qq.com*通信作者简介:阿布都卡的·吾甫(1963— ),男,博士,教授,研究方向为代数表示论、量子群及Gröbner-Shirshov基理论. E-mail:abdukadir@xju.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11861061)

Gröbner-Shirshov basis of modified Ringel-Hall algebra of type B2

HU De-sheng, Abdukadir OBUL*   

  1. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
  • Published:2023-02-12

摘要: 给出了modified Ringel-Hall代数中不可分解复形同构类之间的所有拟交换关系,证明了这些拟交换关系之集是B2-型modified Ringel-Hall代数的一个极小Gröbner-Shirshov基。作为一个应用,得到了B2-型modified Ringel-Hall代数的一组PBW基。

关键词: modified Ringel-Hall代数, 拟交换关系, Grö, bner-Shirshov基

Abstract: Skew commutator relations between the isoclasses of indecomposable complexes in the modified Ringel-Hall algebra of type B2 is computed, it is proved that the set of these skew commutator relations forms a minimal Gröbner-Shirshov basis for the modified Ringel-Hall algebra of type B2. As an application, a PBW-type basis of the modified Ringel-Hall algebra of type B2 is obtained.

Key words: modified Ringel-Hall algebra, skew commutator relation, Grö, bner-Shirshov basis

中图分类号: 

  • O153.3
[1] RINGEL C M. Hall algebras and quantum groups[J]. Inventiones Mathematicae, 1990, 101(1):583-591.
[2] RINGEL C M. Hall algebra revisited[C] //Israel Math Conf Proc. Jerusalem: Weizmann Sci Press, 1993: 171-176.
[3] GREEN J A. Hall algebras, hereditary algebras and quantum groups[J]. Inventiones Mathematicae, 1995, 120(1):361-377.
[4] XIAO J. Drinfeld double and ringel-green theory of Hall algebras[J]. Journal of Algebra, 1997, 190(1):100-144.
[5] TOËN B. Derived Hall algebras[J]. Duke Mathematical Journal, 2006, 135(3):587-615.
[6] XIAO J, XU F. Hall algebras associated to triangulated categories[J]. Duke Mathematical Journal, 2008,143(2):353-373.
[7] BRIDGELAND T. Quantum groups via Hall algebras of complexes[J]. Annals of Mathematics, 2013, 177(2):739-759.
[8] YANAGIDA S. A note on Bridgelands Hall algebra of two-periodic complexes[J]. Mathematische Zeitschrift, 2016, 282(3/4):973-991.
[9] ZHANG H C. A note on Bridgelands Hall algebras[J]. Communications in Algebra, 2018, 46(6):2551-2560.
[10] LIN J, PENG L G. Modified Ringel-Hall algebras, Greens formula and derived Hall algebras[J]. Journal of Algebra, 2019, 526:81-103.
[11] BUCHBERGER B. An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal(in German)[D]. Austria: University of Innsbruck, 1965.
[12] SHIRSHOV A I. Some algorithmic problem for Lie algebras[J]. Sibirsk Mat Z, 1962, 3(2):292-296.
[13] BERGMAN G M. The diamond lemma for ring theory[J]. Advances in Mathematics, 1978, 29(2):178-218.
[14] BOKUT L, MALCOLMSON P. Gröbner-Shirshov bases for quantum enveloping algebras[J]. Israel Journal of Mathematics, 1996, 96(1):97-113.
[15] BOKUT L A, CHEN Y Q, SHUM K P. Some new results on Gröbner-Shirshov bases[C] //Proceedings of the International Conference on Algebra 2010. Gadjah Mada: World Scientific, 2011: 53-102.
[16] HUBERY A. From triangulated categories to Lie algebras: a theorem of Peng and Xiao[C] //Trends in representation theory of algebras and related topics, Contemp Math, Vol 406. Providence: [s.n.] , 2006.
[17] HAPPEL D. Triangulated categories in the representation of finite dimensional algebras[M]. Cambridge: Cambridge University Press, 1988.
[18] SEVENHANT B, VAN DEN BERGH M. On the double of the Hall algebra of a quiver[J]. Journal of Algebra, 1999, 221(1):135-160.
[19] RINGEL C M. Representations of K-species and bimodules[J]. Journal of Algebra, 1976, 41(2):269-302.
[20] RINGEL C M. PBW-bases of quantum groups[J]. J Reine Angew Math, 1996, 470:51-88.
[21] 王云霞,阿布都卡的·吾甫. B2-型导出Hall代数的Gröbner-Shirshov基[J].中国科学:数学,2022,52(3):245-256. WANG Yunxia, OBUL A. Gröbner-Shirshov basis of derived Hall algebra of type B2[J]. Scientia Sinica Mathematica, 2022, 52(3):245-256.
[1] 何钰星,阿布都卡的·吾甫. B2-型量子群的不可约模的Gröbner-Shirshov对[J]. 《山东大学学报(理学版)》, 2020, 55(8): 28-37.
[2] 古丽沙旦木·玉奴斯,阿布都卡的·吾甫. 广义逆的Gröbner-Shirshov基方法[J]. 《山东大学学报(理学版)》, 2020, 55(4): 54-57.
[3] 木娜依木·迪里夏提,阿布都卡的·吾甫. A型退化仿射Hecke代数的Gröbner-Shirshov基[J]. 《山东大学学报(理学版)》, 2019, 54(2): 106-110.
[4] 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17.
[5] 高珍珍, 杨士林, 阿布都卡的·吾甫. Anick分解和量子群Uq(sl2)的一些同调性质[J]. 山东大学学报(理学版), 2014, 49(10): 17-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!