您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (4): 40-48.doi: 10.6040/j.issn.1671-9352.0.2022.280

• • 上一篇    

抛物型最优控制问题的三次B样条有限元方法

杜芳芳,孙同军*   

  1. 山东大学数学学院, 山东 济南 250100
  • 发布日期:2023-03-27
  • 作者简介:杜芳芳(1999— ),女,硕士研究生,研究方向为偏微分方程最优控制问题的数值解法. E-mail:202111897@mail.sdu.edu.cn*通信作者简介:孙同军(1970— ),男,博士,教授,博士生导师,研究方向为偏微分方程最优控制问题的数值解法. E-mail:tjsun@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11871312)

Cubic B-spline finite element method for parabolic optimal control problems

DU Fang-fang, SUN Tong-jun*   

  1. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Published:2023-03-27

摘要: 对一类四阶非线性抛物方程最优控制问题提出一种三次B样条有限元方法。状态变量和对偶状态变量用具有更好光滑性的分片三次B样条连续函数进行逼近,控制变量由分片常数函数进行逼近。这样得到的状态变量和对偶状态变量的数值解二阶连续可微。建立最优性系统的全离散格式,并用迭代法进行求解。最后建立数值算例,验证方法的有效性。

关键词: 三次B样条有限元方法, 最优控制问题, 四阶非线性抛物方程, 最优性系统, 迭代法

Abstract: A cubic B-spline finite element method is proposed for optimal control problems governed by a class of fourth-order nonlinear parabolic equations. The state and co-state variables are discretized by piecewise cubic B-spline continuous functions which have better smoothness and the control variable is approximated by piecewise constant functions. The numerical solutions of the state and co-state variables thus obtained are second-order continuously differentiable. A fully discrete scheme of the optimality system is established and solved by an iterative method. Finally, some numerical examples are presented to verify the effectivity of the proposed method.

Key words: cubic B-spline finite element method, optimal control problem, fourth-order nonlinear parabolic equation, optimality system, iterative method

中图分类号: 

  • O241.82
[1] LIONS J L. Optimal control of systems governed by partial differential equations[M]. Berlin: Springer-Verlag, 1971.
[2] HINZE M, PINNAU R, ULBRICH M, et al. Optimization with PDE constraints[M]. Dordrecht, Netherlands: Springer, 2009.
[3] LIU Wenbin, YAN Ningning. Adaptive finite element methods for optimal control governed by PDEs[M]. Beijing: Science Press, 2008.
[4] FU Hongfei, RUI Hongxing. A priori error estimates for optimal control problems governed by transient advection-diffusion equations[J]. Journal of Scientific Computing, 2009, 38(3):290-315.
[5] LU Zuliang. Adaptive fully-discrete finite element methods for nonlinear quadratic parabolic boundary optimal control[J/OL]. Boundary Value Problems, 2013[2022-08-06]. https://boundaryvalueproblems.springeropen.com/articles/10.1186/1687-2770-2013-72.
[6] CHANG Yanzhen, YANG Danping. Finite element approximation for a class of parameter estimation problems[J]. Journal of Systems Science and Complexity, 2014, 27(5):866-882.
[7] HOU Chunjuan, LU Zuliang, CHEN Xuejiao, et al. Error estimates of variational discretization for semilinear parabolic optimal control problems[J]. AIMS Mathematics, 2021, 6(1):772-793.
[8] DOMINIK M, BORIS V. A priori error estimates for space-time finite element discretization of parabolic optimal control problems(part Ⅰ): problems without control constraints[J]. SIAM Journal on Control and Optimization, 2008, 47(3):1150-1177.
[9] DOMINIK M, BORIS V. A priori error estimates for space-time finite element discretization of parabolic optimal control problems(part Ⅱ): problems with control constraints[J]. SIAM Journal on Control and Optimization, 2008, 47(3):1301-1329.
[10] ZHAO Xiaopeng, CAO Jinde. Optimal control problem for the BCF model describing crystal surface growth[J]. Nonlinear Analysis: Modelling and Control, 2016, 21(2):223-240.
[11] BURTON W K, CABRERA N, FRANK F C. The growth of crystals and the equilibrium structure of their surfaces[J]. Mathematical and Physical Sciences, 1951, 243(866):299-358.
[12] JOHNSON M D, ORME C, HUNT A W, et al. Stable and unstable growth in molecular beam epitaxy[J]. Phys Rev Lett, 1994, 72(1):116-119.
[13] HAMID N N A, MAJID A A, ISMAIL A I M. Bicubic B-spline interpolation method for two-dimensional heat equation[J]. AIP Conference Proceedings, 2015, 1682(1):020031.
[14] GARDNER L R T, GARDNER G A. A two dimensional bicubic B-spline finite element: used in a study of MHD-duct flow[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 124(4):365-375.
[15] MOHANTY R K, JAIN M K, DHALL D. High accuracy cubic spline approximation for two dimensional quasi-linear elliptic boundary value problems[J]. Applied Mathematical Modelling, 2013, 37(1):155-171.
[16] BAI Dongmei, ZHANG Luming. The quadratic B-spline finite element method for the coupled Schrödinger-Boussinesq equations[J]. International Journal of Computer Mathematics, 2011, 88(8):1714-1729.
[17] WENDEL S, MAISCH H, KARL H, et al. Two dimensional B-spline finite elements and their application to the computation of solitons[J]. Archiv für Elektrotechnik, 1993, 76(6):427-435.
[18] QIN Dandan, TAN Jiawei, LIU Bo, et al. A B-spline finite element method for solving a class of nonlinear parabolic equations modeling epitaxial thin-film growth with variable coefficient[J/OL]. Advances in Difference Equations, 2020[2022-08-06]. https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02629-6.
[19] QIN Dandan, DU Yanwei, LIU Bo, et al. A B-spline finite element method for nonlinear differential equations describing crystal surface growth with variable coefficient[J/OL]. Advances in Difference Equations, 2019[2022-08-06]. https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2032-5.
[20] ZHAO Xiaopeng, LIU Fengnan, LIU Bo. Finite element method for a nonlinear differential equation describing crystal surface growth[J]. Mathematical Modelling and Analysis, 2014, 19(2):155-168.
[21] ADAMS R. Sobolev spaces[M]. New York: Academic Press, 1975.
[1] 段对花,高承华,王晶晶. 一类k-Hessian方程爆破解的存在性和不存在性[J]. 《山东大学学报(理学版)》, 2022, 57(3): 62-67.
[2] 王燕荣,陈云兰. 一种改进的求解大型线性方程组的Jacobi迭代法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 122-126.
[3] 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121.
[4] 郑瑞瑞,孙同军. 一类捕食与被捕食模型最优控制问题的有限元方法的先验误差估计[J]. 《山东大学学报(理学版)》, 2020, 55(1): 23-32.
[5] 杨朝强. 一类混合跳-扩散分数布朗运动的欧式回望期权定价[J]. J4, 2013, 48(6): 67-74.
[6] 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65-71.
[7] 刘晓光,畅大为*. 亏秩线性方程组PSD迭代法的最优参数[J]. J4, 2011, 46(12): 13-18.
[8] 陆峰. 解大型线性方程组的轮换重新开始Krylov子空间方法[J]. J4, 2010, 45(9): 65-69.
[9] 张守慧,王文洽 . 热传导方程有限差分逼近的数学Stencil及其新型迭代格式[J]. J4, 2006, 41(6): 24-31 .
[10] 陈莉, . 非方离散广义系统的奇异LQ问题及最优代价单调性[J]. J4, 2006, 41(5): 80-83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!