您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (5): 17-25.doi: 10.6040/j.issn.1671-9352.0.2022.410

• • 上一篇    

面向对象删除的局部邻域粗糙集动态更新算法

时俊鹏1,2,张燕兰1,2*   

  1. 1.闽南师范大学计算机学院, 福建 漳州 363000;2.数据科学与智能应用福建省高校重点实验室, 福建 漳州 363000
  • 发布日期:2023-05-15
  • 作者简介:时俊鹏(1998— ),男,硕士研究生,研究方向为机器学习与数据挖掘. E-mail:junpshi@foxmail.com*通信作者简介:张燕兰(1983— ),女,博士,教授,研究方向为不确定性处理、粒计算. E-mail:zhangppff@126.com
  • 基金资助:
    国家自然科学基金资助项目(11701258,11871259);福建省自然科学基金资助项目(2022J01912,2020J01801,2020J02043,2019J01749);福建省高校杰出青年科研人才培养计划

Dynamic updating algorithm of local neighborhood rough sets with the deletion of objects

SHI Junpeng1,2, ZHANG Yanlan1,2*   

  1. 1. School of Computer Science, Minnan Normal University, Zhangzhou 363000, Fujian, China;
    2. Key Laboratory of Data Science and Intelligence Application in Fujian Provincial Universities, Minnan Normal University, Zhangzhou 363000, Fujian, China
  • Published:2023-05-15

摘要: 为了有效地计算动态数值型数据的近似算子,提出了一种局部邻域粗糙集模型的动态更新算法,分析对象集减少时局部近似集的更新公式,设计获取局部近似集的动态算法。动态更新算法充分利用已有知识,避免了大量重复计算。为了验证算法的有效性,使用来自UCI的6组数据集进行了对比实验。

关键词: 邻域信息系统, 局部邻域粗糙集, 对象删除, 近似集, 动态更新

Abstract: A dynamic updating algorithm of the local neighborhood rough set model is proposed effectively to obtain the approximation operators of dynamic numerical data. We analyze the updating formula of the local approximation set when the object set decreases and design a dynamic algorithm to obtain the local neighborhood approximation sets. The dynamic updating algorithm can make full use of existing knowledge and avoid a considerable part of repeated calculations. To verify the effectiveness of the algorithm, comparative experiments are conducted using six datasets from UCI.

Key words: neighborhood information system, local neighborhood rough set, deleting object, approximation set, dynamic updating

中图分类号: 

  • TP18
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5):341-356.
[2] QIAN Yuhua, LIANG Xinyan, WANG Qi, et al. Local rough set: a solution to rough data analysis in big data[J]. International Journal of Approximate Reasoning, 2018, 97:38-63.
[3] WANG Qi, QIAN Yuhua, LIANG Xinyan, et al. Local neighborhood rough set[J]. Knowledge-Based Systems, 2018, 153:53-64.
[4] 周悦丽, 林国平. 基于相容关系的局部粗糙集模型[J]. 模糊系统与数学, 2020, 34(6):43-54. ZHOU Yueli, LIN Guoping. Local rough sets based on tolerance relations[J]. Fuzzy Systems and Mathematics, 2020, 34(6):43-54.
[5] 张杰, 张燕兰. 基于相似关系的局部粗糙集模型[J]. 山东大学学报(理学版), 2021, 56(3):77-82. ZHANG Jie, ZHANG Yanlan. Local rough set model based on similarity relation[J]. Journal of Shandong University(Natural Science), 2021, 56(3):77-82.
[6] ZHANG Chucai, DAI Jianhua, CHEN Jiaolong. Knowledge granularity based incremental attribute reduction for incomplete decision systems[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(5):1141-1157.
[7] WANG Shu, LI Tianrui, LUO Chuan, et al. A novel approach for efficient updating approximations in dynamic ordered information systems[J]. Information Sciences, 2020, 507:197-219.
[8] GE Hao, YANG Chuanjian, XU Yi. Incremental updating three-way regions with variations of objects and attributes incomplete neighborhood systems[J]. Information Sciences, 2022, 584:479-502.
[9] CHEN H M, LI T R, RUAN D, et al. A rough-set-based incremental approach for updating approximations under dynamic maintenance environments[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 25(2):274-284.
[10] CHEN Hongmei, LI Tianrui, LUO Chuan, et al. A decision-theoretic rough set approach for dynamic data mining[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(6):1958-1970.
[11] LUO Chuan, LI Tianrui, CHEN Hongmei, et al. Incremental approaches for updating approximations in set-valued ordered information systems[J]. Knowledge-Based Systems, 2013, 50:218-233.
[12] YANG Xin, LI Tianrui, LIU Dun, et al. A unified framework of dynamic three-way probabilistic rough sets[J]. Information Sciences, 2017, 420:126-147.
[13] 杨臻, 邱保志. 混合信息系统的动态变精度粗糙集模型[J]. 控制与决策, 2020, 35(2):297-308. YANG Zhen, QIU Baozhi. Dynamic variable precision rough set model of mixed information system[J]. Control and Decision, 2020, 35(2):297-308.
[14] 孙海霞. 基于对象变化的邻域决策粗糙集动态更新算法[J]. 智能系统学报, 2021, 16(4):746-756. SUN Haixia. Dynamic updating algorithm of neighborhood decision-theoretic rough set model based on object change[J]. CAAI Transactions on Intelligent Systems, 2021, 16(4):746-756.
[15] LI Wentao, XU Weihua, ZHANG Xiaoyan, et al. Updating approximations with dynamic objects based on local multigranulation rough sets in ordered information systems[J]. Artificial Intelligence Review, 2022, 55(3):1821-1855.
[16] XU Weihua, YUAN Kehua, LI Wentao. Dynamic updating approximations of local generalized multigranulation neighborhood rough set[J]. Applied Intelligence, 2022, 52(8):9148-9173.
[1] 张海洋,马周明,于佩秋,林梦雷,李进金. 多粒度粗糙集近似集的增量方法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 51-61.
[2] 李粉宁,范敏,李金海. 形式概念分析中面向对象粒概念的动态更新[J]. 《山东大学学报(理学版)》, 2019, 54(4): 105-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!