您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (6): 36-43, 70.doi: 10.6040/j.issn.1671-9352.0.2023.192

•   • 上一篇    下一篇

完全二部图K12, n(12≤n≤88)的点可区别E-全染色

胡开洋1(),黄明芳1,*(),马宝林2   

  1. 1. 武汉理工大学理学院, 湖北 武汉 430070
    2. 河南科技学院数学科学学院, 河南 新乡 453003
  • 收稿日期:2023-04-28 出版日期:2024-06-20 发布日期:2024-06-17
  • 通讯作者: 黄明芳 E-mail:2776982452@qq.com;ds_hmf@126.com
  • 作者简介:胡开洋(1999—), 男, 硕士研究生, 研究方向为图论. E-mail: 2776982452@qq.com
  • 基金资助:
    国家自然科学基金资助项目(12261094)

Vertex-distinguishing E-total coloring of complete bipartite graph K12, n for 12≤n≤88

Kaiyang HU1(),Mingfang HUANG1,*(),Baolin MA2   

  1. 1. School of Science, Wuhan University of Technology, Wuhan 430070, Hubei, China
    2. School of Mathematics and Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
  • Received:2023-04-28 Online:2024-06-20 Published:2024-06-17
  • Contact: Mingfang HUANG E-mail:2776982452@qq.com;ds_hmf@126.com

摘要:

G的一个E-全染色是指图G中存在一个映射f : $V \cup E \rightarrow\{1, 2, \cdots, k\} $, 对于任意边e=uvE(G), 有f(e)≠f(u), f(e)≠f(v)且f(u)≠f(v)。在E-全染色f下, 令C(v)表示顶点v所染的颜色及与顶点v相邻的边所染的颜色所构成的集合。若$ \forall$u, vV(G), uvC(u)≠C(v), 则称f为图Gk-点可区别E-全染色, 简称k-VDET染色。本文证明了完全二部图K12, n分别在12≤n≤28下的6-VDET染色和29≤n≤88下的7-VDET染色。

关键词: 完全二部图, E-全染色, 点可区别E-全染色

Abstract:

An E-total coloring of graph G is a mapping f : $V \cup E \rightarrow\{1, 2, \cdots, k\} $ such that for each edge $ e=u v \in E(G), f(e) \neq f(u)$, $ $ $ f(e) \neq f(v) \text { and } f(u) \neq f(v)$. For an E-total coloring f of a graph G, let C(v) denote the set of colors of vertex v and the edges incident with v. If $ C(u) \neq C(v) \text { where } u, v \in V(G) \text { and } u \neq v$, then that f is a k-vertex-distinguishing E-total coloring of graph G, or simply k-VDET coloring. This paper proves 6-VDET coloring and 7-VDET coloring of complete bipartite graph K12, n for 12≤n≤28 and 29≤n≤88, respectively.

Key words: complete bipartite graph, E-total coloring, vertex-distinguishing E-total coloring

中图分类号: 

  • O157.5

表1

当12≤i≤28时K12, 28的顶点ui及其关联边的染色方案"

限制条件 顶点ui对应的集合 顶点ui及其关联边染色
1≤a≤3, 3≤b≤4, ab {a, b} a; b, b, b, b, b, b, b, b, b, b, b, b
3≤a≤4 {1, 2, a} 1;2, a, a, 2, 2, a, 2, 2, a, 2, a, a
1≤a≤2 {a, 3, 4} a; 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4
1≤a≤2, 3≤b≤4 {a, b, 5} a; b, b, b, b, b, b, 5, b, b, 5, b, b
1≤a≤2, 3≤b≤4 {a, b, 6} a; 6, b, b, b, b, b, b, b, 6, b, b, b
3≤a≤4 {1, 2, a, 5} 1;2, a, a, a, a, 5, a, a, a, 5, a, a
3≤a≤4 {1, 2, a, 6} 1;6, a, a, 2, a, a, a, a, 6, a, a, a
1≤a≤2, 3≤b≤4 {a, b, 5, 6} a; b, b, b, b, b, b, b, b, 6, 5, b, b
3≤a≤4 {1, 2, a, 5, 6} 1;a, a, a, a, a, a, a, a, 6, 5, a, a
{1, 2, 3, 4} 2;1, 1, 1, 3, 3, 3, 1, 1, 1, 3, 3, 3

表2

当12≤i≤88时K12, 88的顶点ui及其关联边的染色方案"

限制条件 顶点ui对应的集合 顶点ui及其关联边染色
1≤a≤4, 3≤b≤5, ab {a, b} a; b, b, b, b, b, b, b, b, b, b, b, b
3≤a≤5 {1, 2, a} 1;2, a, a, a, 2, 2, a, a, a, 2, a, a
1≤a≤3, 3≤b≤4, 4≤c≤5, abc {a, b, c} a; b, c, c, c, c, c, c, c, c, c, c, c
1≤a≤2, 3≤b≤5 {a, b, 6} a; b, b, b, b, b, b, 6, b, b, b, 6, b
1≤a≤2, 3≤b≤5 {a, b, 7} a; b, b, b, b, b, b, b, b, b, 7, b, 7
3≤a≤4, 4≤b≤5, ab {a, b, 6} a; b, b, b, b, b, b, 6, b, b, b, 6, b
3≤a≤4, 4≤b≤5, ab {a, b, 7} a; b, b, b, b, b, b, b, b, b, 7, b, 7
3≤a≤5, b=4, 5, 7, ab {1, 2, a, b} 1;a, a, a, a, 2, 2, a, 2, 2, b, 2, 2
3≤a≤5 {1, 2, a, 6} 1;a, a, a, a, 2, 2, 6, 2, 2, 2, 6, 2
1≤a≤2, 3≤b≤4, 4≤c≤5, d=4, 5, 7, bcd {a, b, c, d} a; c, c, c, c, b, b, c, b, b, d, b, b
1≤a≤2, 3≤b≤4, 4≤c≤5, bc {a, b, c, 6} a; b, b, b, b, b, b, 6, b, b, b, 6, c
3≤a≤4, 4≤b≤5, c=5, 7, abc {1, 2, a, b, c} 1;a, a, a, a, 2, 2, b, 2, 2, c, 2, 2
3≤a≤4, 4≤b≤5, ab {1, 2, a, b, 6} 1;a, a, a, a, 2, 2, 6, 2, 2, 2, 6, b
3≤a≤5 {1, 2, a, 6, 7} 1;a, a, a, a, 2, 2, 6, 2, 2, 7, 6, 7
1≤a≤2, 3≤b≤4, 4≤c≤5, bc {a, b, c, 6, 7} a; b, b, b, b, c, c, 6, c, c, 7, 6, 7
4≤a≤5 {1, 2, 3, a, 6, 7} 2;3, a, 1, 1, 3, a, 6, 1, 1, 1, 6, 7
{1, 2, 4, 5, 6, 7} 2;4, 5, 1, 1, 4, 5, 6, 1, 1, 7, 6, 1
1 CHENX E,ZUY,ZHANGZ F.Vertex-distinguishing E-total colorings of graphs[J].Arab J Sci Eng,2011,36,1485-1500.
doi: 10.1007/s13369-011-0099-8
2 李世玲,陈祥恩,王治文.完全二部图K3, n(3≤n≤17)的点可区别E-全染色[J].吉林大学学报(理学版),2015,53(6):1171-1176.
LIShiling,CHENXiang'en,WANGZhiwen.Vertex-distinguishing E-total coloring of complete bipartite graph K3, n when 3≤n≤17[J].Journal of Jilin University (Science Edition),2015,53(6):1171-1176.
3 张琛,李红霞.完全二部图K4, n(n≥47)的点可区别E-全染色[J].佳木斯大学学报(自然科学版),2017,35(1):124-127.
ZHANGChen,LIHongxia.Vertex-distinguishing E-total coloring of complete bipartite graph K4, n when n≥47[J].Journal of Jiamusi University (Natural Science Edition),2017,35(1):124-127.
4 师志凤,陈祥恩,王治文.完全二部图K6, n(6≤n≤38) 的点可区别E-全染色[J].吉林大学学报(理学版),2018,56(4):845-852.
SHIZhifeng,CHENXian'gen,WANGZhiwen.Vertex-distinguishing E-total coloring of complete bipartite graph K6, n when 6≤n≤38[J].Journal of Jilin University (Science Edition),2018,56(4):845-852.
5 CHENXiang'en,DUXiankun.Vertex-distinguishing E-total coloring of complete bipartite graph K7, n when 7≤n≤95[J].Communications in Mathematical Research,2016,32(4):359-374.
6 杨澜,陈祥恩.完全二部图K8, n(8≤n≤34) 的点可区别E-全染色[J].高校应用数学学报: A辑,2021,36(4):492-500.
YANGLan,CHENXiang'en.Vertex-distinguishing E-total coloring of complete bipartite graph K8, n when 8≤n≤34[J].Applied Mathematics A Journal of Chinese Universities: Series A,2021,36(4):492-500.
7 杨澜,陈祥恩.完全二部图K8, n(3 975≤n≤7 769)的点可区别E-全染色[J].东北师大学报(自然科学版),2021,53(2):14-18.
YANGLan,CHENXiang'en.Vertex-distinguishing E-total coloring of complete bipartite graph K8, n when 3 975≤n≤7 769[J].Journal of Northeast Normal University (Natural Science Edition),2021,53(2):14-18.
8 杨伟光,陈祥恩.完全二部图K9, n(9≤n≤92)的点可区别E-全染色[J].吉林大学学报(理学版),2020,58(2):301-308.
YANGWeiguang,CHENXiang'en.Vertex-distinguishing E-total coloring of complete bipartite graph K9, n when 9≤n≤92[J].Journal of Jilin University (Science Edition),2020,58(2):301-308.
9 陈祥恩,杨伟光.完全二部图K9, n(93≤n≤216)的点可区别E-全染色[J].华东师范大学学报(自然科学版),2020,214(6):24-29.
CHENXiang'en,YANGWeiguang.Vertex-distinguishing E-total coloring of complete bipartite graph K9, n(93≤n≤216)[J].Journal of East China Normal University (Natural Science Edition),2020,214(6):24-29.
10 包丽娅,陈祥恩,王治文.完全二部图K10, n(10≤n≤90)的点可区别E-全染色[J].山东大学学报(理学版),2018,53(12):23-30.
doi: 10.6040/j.issn.1671-9352.0.2018.605
BAOLiya,CHENXiang'en,WANGZhiwen.Vertex-distinguishing E-total coloring of complete bipartite graph K10, n when 10≤n≤90[J].Journal of Shandong University (Natural Science),2018,53(12):23-30.
doi: 10.6040/j.issn.1671-9352.0.2018.605
11 陈祥恩,包丽娅.完全二部图K10, n(91≤n≤214)的点可区别E-全染色[J].兰州大学学报(自然科学版),2019,55(3):410-414.
CHENXiang'en,BAOLiya.Vertex-distinguishing E-total coloring of complete bipartite graph K10, n when 91≤n≤214[J].Journal of Lanzhou University (Natural Science Edition),2019,55(3):410-414.
12 汉大玮,陈祥恩.完全二部图K11, n(11≤n≤88)的点可区别E-全染色[J].广州大学学报(自然科学版),2022,21(1):10-17.
HANDawei,CHENXiang'en.Vertex-distinguishing E-total coloring of complete bipartite graph K11, n when 11≤n≤88[J].Journal of Guangzhou University (Natural Science Edition),2022,21(1):10-17.
13 汉大玮.完全二部图K11, n(89≤n≤212)的点可区别E-全染色[J].理论数学,2022,(4):572-579.
HANDawei.Vertex-distinguishing E-total coloring of complete bipartite graph K11, n when 89≤n≤212[J].Pure Mathematics,2022,(4):572-579.
[1] 曹静,陈祥恩. 轮与扇的点被多重集可区别的E-全染色[J]. 《山东大学学报(理学版)》, 2024, 59(2): 38-46.
[2] 索孟鸽,陈京荣,张娟敏. 笛卡尔乘积图的k-路点覆盖[J]. 《山东大学学报(理学版)》, 2022, 57(12): 103-110.
[3] 寇艳芳,陈祥恩,王治文. K1,3,p K1,4,p的点可区别的IE-全染色及一般全染色[J]. 山东大学学报(理学版), 2018, 53(8): 53-60.
[4] 包丽娅,陈祥恩,王治文. 完全二部图K10,n(10≤n≤90)的点可区别E-全染色[J]. 《山东大学学报(理学版)》, 2018, 53(12): 23-30.
[5] 李世玲, 陈祥恩,王治文. 完全二部图K3,n(n≥18)的点可区别E-全染色[J]. 山东大学学报(理学版), 2016, 51(4): 68-71.
[6] 刘信生, 邓卫东, 王志强. 直积图邻点可区别E-全染色的一些结论[J]. 山东大学学报(理学版), 2015, 50(02): 5-8.
[7] 李振琳,卢君龙,吕新忠. 关于图的符号边全控制[J]. J4, 2012, 47(6): 83-86.
[8] 王国兴. 点不交的m个C3的并的点可区别IE-全染色[J]. J4, 2011, 46(2): 57-61.
[9] 何文玉, 陈祥恩*. 完全二部图K5,n的点可区别IE全染色[J]. J4, 2009, 44(2): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 尹华军1,2,张习勇1,2*. 特征为2的有限域上二次函数指数和计算的新方法[J]. J4, 2013, 48(3): 24 -30 .
[2] 耿建艳,颜 谨,李 峰 . 二部图中含指定顶点的独立4-圈[J]. J4, 2008, 43(5): 87 -92 .
[3] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[4] 王 瑶,刘 建,王仁卿,* . 阿利效应及其对生物入侵和自然保护中小种群管理的启示[J]. J4, 2007, 42(1): 76 -82 .
[5] 刘保仓,史开泉 . S-粗集的信度特征[J]. J4, 2006, 41(5): 26 -29 .
[6] 郭 会,林 超 . 对流占优Sobolev方程的最小二乘特征混合有限元方法[J]. J4, 2008, 43(9): 45 -50 .
[7] 张丽,许玉铭 . σ1-空间及其性质[J]. J4, 2006, 41(5): 30 -32 .
[8] 刘才然, 宋贤梅. 环Fl+vFl+v2Fl上的二次剩余码[J]. 山东大学学报(理学版), 2014, 49(10): 45 -49 .
[9] 瞿萌,束立生. 一类带粗糙核的Marcinkiewicz积分算子的Lp有界性[J]. J4, 2011, 46(6): 22 -28 .
[10] 唐善刚. 容斥原理的拓展及其应用[J]. J4, 2010, 45(12): 12 -15 .