《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (8): 48-55,66.doi: 10.6040/j.issn.1671-9352.0.2023.543
摘要:
研究一类分数阶Choquard方程的正规解, 其中非线性项包含Hardy-Littlewood-Sobolev临界指数和带参数的质量超临界非局部项, 分析Pohozaev流形的性质, 建立了上述方程对应能量泛函的Palais-Smale序列的紧性条件。当扰动项的系数充分大时, 获得了其正规基态解的存在性。
中图分类号:
1 | MOLICA BISCI G , RADULESCU V , SERVADEI R . Variational methods for nonlocal fractional problems, with a foreword by Jean Mawhin, encyclopedia of mathematics and its applications[M]. Cambridge: Cambridge University Press, 2016. |
2 |
BHATTARAI S . On fractional Schrödinger systems of Choquard type[J]. Journal of Differential Equations, 2017, 263 (6): 3197- 3229.
doi: 10.1016/j.jde.2017.04.034 |
3 |
FENG Binhua , CHEN Ruipeng , REN Jiajia . Existence of stable standing waves for the fractional Schrödinger equations with combined power-type and Choquard-type nonlinearities[J]. Journal of Mathematical Physics, 2019, 60 (5): 051512.
doi: 10.1063/1.5082684 |
4 |
LAN Jiali , HE Xiaoming , MENG Yuxi . Normalized solutions for a critical fractional Choquard equation with a nonlocal perturbation[J]. Advances in Nonlinear Analysis, 2023, 12 (1): 20230112.
doi: 10.1515/anona-2023-0112 |
5 |
YANG Tao . Normalized solutions for the fractional Schrödinger equation with a focusing nonlocal L2-critical or L2-supercritical perturbation[J]. Journal of Mathematical Physics, 2020, 61 (5): 051505.
doi: 10.1063/1.5144695 |
6 | HE X M , RADULESCU V , ZOU W M . Normalized ground states for the critical fractional Choquard equation with a local perturbation[J]. The Journal of Geometric Analysis, 2022, 32 (7): 1- 51. |
7 |
YE Weiwei , SHEN Zifen , YANG Minbo . Normalized solutions for a critical Hartree equation with perturbation[J]. The Journal of Geometric Analysis, 2022, 32 (9): 242.
doi: 10.1007/s12220-022-00986-0 |
8 |
CHEN Jianqing , CHEN Zhewen . Normalized ground states for a Hardy-Littlewood-Sobolev upper critical Schrödinger equation with double Choquard type nonlinear terms[J]. Applied Mathematics Letters, 2023, 138, 108521.
doi: 10.1016/j.aml.2022.108521 |
9 |
LI Xinfu . Nonexistence, existence and symmetry of normalized ground states to Choquard equations with a local perturbation[J]. Complex Variables and Elliptic Equations, 2023, 68 (4): 578- 602.
doi: 10.1080/17476933.2021.2007378 |
10 |
SOAVE N . Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case[J]. Journal of Functional Analysis, 2020, 279 (6): 108610.
doi: 10.1016/j.jfa.2020.108610 |
11 |
ALVES C O , CHAO J , MIYAGAKI O H . Normalized solutions for a Schrodinger equation with critical growth in RN[J]. Calculus of Variations and Partial Differential Equations, 2022, 61 (1): 1- 24.
doi: 10.1007/s00526-021-02102-6 |
12 | ZUO J B , RADULESCU V . Normalized solutions to fractional mass supercritical NLS systems with Sobolev critical nonlinearities[J]. Analysis and Mathematical Physics, 2022, 12 (6): 1- 20. |
13 |
DI NEZZA E , PALATUCCI G , VALDINOCI E . Hitchiker's guide to the fractional Sobolev spaces[J]. Bulletin des Sciences Mathématiques, 2012, 136 (5): 521- 573.
doi: 10.1016/j.bulsci.2011.12.004 |
14 |
JEANJEAN L . Existence of solutions with prescribed norm for semilinear elliptic equations[J]. Nonlinear Analysis, 1997, 28 (10): 1633- 1659.
doi: 10.1016/S0362-546X(96)00021-1 |
15 | LUO Haijun , ZHANG Zhitao . Normalized solutions to the fractional Schrodinger equations with combined nonlinearities[J]. Calculus of Variations and Partial Differential Equations, 2020, 59 (4): 1- 35. |
16 | CINGOLANI S , GALLO M , TANAKA K . Symmetric ground states for doubly nonlocal equations with mass constraint[J]. Symmetry, 2021, 13 (7): 1- 17. |
[1] | 王培婷,李安然,魏重庆. 下临界Choquard型线性耦合系统基态解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 62-67. |
[2] | 刘新民,崔玉军* . Banach空间非柱形域上微分系统解的存在性[J]. J4, 2008, 43(4): 1-05 . |
|