《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 59-64.doi: 10.6040/j.issn.1671-9352.0.2023.246
• • 上一篇
吴亚楠
WU Yanan
摘要: 研究由S(a2b)生成的簇V(S(a2b)),刻画V(S(a2b))的子簇格L(V(S(a2b))),证明V(S(a2b))的每一个子簇都是有限基底和V(S(a2b))是遗传有限基底。
中图分类号:
| [1] BURRIS S, SANKAPPANAVAR H P. A course in universal algebra[M]. New York: Springer, 1981. [2] GHOSH S, PASTIJN F, ZHAO X Z. Varieties generated by ordered bands I[J]. Order, 2005, 22:109-128. [3] PASTIJN F. Varieties generated by ordered bands II[J]. Order, 2005, 22:129-143. [4] PASTIJN F, ZHAO X Z. Varieties of idempotent semirings with commutative addition[J]. Algebra Universalis, 2005, 54:301-321. [5] REN Miaomiao, ZHAO Xianzhong. The varieties of semilattice-ordered semigroups satisfying x3≈x and xy≈yx[J]. Periodica Mathematica Hungarica, 2016, 72:158-170. [6] REN Miaomiao, ZHAO Xianzhong, WANG Aifa. On the varieties of ai-semirings satisfying x3≈x[J]. Algebra Universalis, 2017, 77(4):395-408. [7] SHAO Yong, REN Miaomiao. On the varieties generated by ai-semirings of order two[J]. Semigroup Forum, 2015, 91:171-184. [8] ZHAO X Z, GUO Y Q, SHUM K P. D -subvarieties of the variety of idempotent semirings[J]. Algebra Colloquium, 2002, 9(1):15-28. [9] ZHAO X Z, SHUM K P, GUO Y Q. L -subvarieties of the variety of idempotent semirings[J]. Algebra Universalis, 2001, 46:75-96. [10] JACKSON M. Flat algebras and the translation of universal Horn logic to equational logic[J]. Journal of Symbolic Logic, 2008, 73:90-128. [11] JACKSON M, REN M M, ZHAO X Z. Nonfinitely based ai-semirings with finitely based semigroup reducts[J]. Journal of Algebra, 2022, 611:211-245. [12] REN M M, JACKSON M, ZHAO X Z, et al. Flat extensions of groups and limit varieties of additively idempotent semirings[J]. Journal of Algebra, 2023, 623:64-85. [13] WU Yanan, ZHAO Xianzhong, REN Miaomiao. On varieties of flat nil-semirings[J]. Semigroup Forum, 2023, 106:271-284. |
| [1] | 田径,龚家豪. 单缀严格语言的组合性质及代数特征[J]. 《山东大学学报(理学版)》, 2024, 59(6): 91-97, 107. |
| [2] | 曹发生. Tarski代数和模态代数的主同余[J]. 《山东大学学报(理学版)》, 2020, 55(10): 20-23. |
| [3] | 周楠,张涛,鹿道伟. Monoidal Hom-双代数上的L-R-smash积[J]. 山东大学学报(理学版), 2017, 52(2): 5-8. |
| [4] | 王伟. Unified积和smash余积的Hopf代数结构[J]. 山东大学学报(理学版), 2017, 52(2): 9-13. |
| [5] | 游弥漫, 赵晓凡. Monoidal Hom-Hopf代数上的对角交叉积[J]. 山东大学学报(理学版), 2015, 50(12): 76-80. |
| [6] | 鹿道伟, 张晓辉. G-余分次乘子Hopf代数的Ore扩张[J]. 山东大学学报(理学版), 2015, 50(10): 52-58. |
| [7] | 赵晓凡, 张晓辉. MonoidalHom-双代数上的广义Hom-smash积[J]. 山东大学学报(理学版), 2015, 50(10): 59-63. |
| [8] | 邢建民 . 环同态上的co-*n-模[J]. J4, 2008, 43(8): 28-30 . |
| [9] | 张涛. Yetter-Drinfeld拟余模范畴上的Hopf拟余模[J]. 《山东大学学报(理学版)》, 2020, 55(4): 58-66. |
| [10] | 张倩,李萱,李歆,郑慧慧,李林涵,张良云. 由Sweedler四维Hopf代数构造Rota-Baxter代数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 47-52. |
| [11] | 曹发生,肖方. 模态代数的主同余[J]. 《山东大学学报(理学版)》, 2020, 55(2): 104-108. |
|
||