《山东大学学报(理学版)》 ›› 2026, Vol. 61 ›› Issue (1): 85-93.doi: 10.6040/j.issn.1671-9352.0.2024.035
• • 上一篇
张光旭1,姚卫2
ZHANG Guangxu1, YAO Wei2
摘要: 以二型模糊预序为基本结构研究了模糊粗糙集,定义一对模糊上下近似算子,并研究它们的性质和相互关系,证明上可定义集和下可定义集是等价的,上可定义集和下可定义集构成一个满层的Alexandrov模糊拓扑。
中图分类号:
| [1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356. [2] BELOHLAVEK R. Fuzzy relational systems: foundations and principles[M]. New York: Kluwer Academic Publishers, 2002: 1-5. [3] 刘清,黄兆华,刘少辉,等. 带Rough算子的决策规则及数据挖掘中的软计算[J]. 计算机研究与发展,1999,36:800-804. LIU Qing, HUANG Zhaohua, LIU Shaohui, et al. Decision rules with rough operator and soft computing of data mining[J]. Journal of Computer Research and Development, 1999, 36:800-804. [4] CIUCCI D E, CATTANEO G. Algebraic structures for rough sets[J]. Transactions on Rough Sets II, 2004, 3135:208-252. [5] SKOWRON A, STEPANIUK J. Tolerance approximation spaces[J]. Fundamenta Informaticae, 1996, 27(2/3):245-253. [6] SLOWINSKI R, VANDERPOOTEN D. A generalized definition of rough approximations based onsimilarity[J]. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(2):331-336. [7] BONIKOWSKI Z, BRYNIARSKI E, WYBRANIEC-SKARDOWSKA U. Extensions and intentions in the rough settheory[J]. Information Sciences, 1998, 107(1/4):149-167. [8] ZAKOWSKI W. Approximations in the space(u,p)[J]. Demonstratio Mathematica, 1983, 16(3):761-769. [9] 米据生,吴伟志,张文修. 粗糙集的构造与公理化方法[J]. 模式识别与人工智能,2002,15(3):280-284. MI Jusheng, WU Weizhi, ZHANG Wenxiu. Constructive and axiomatic approaches of the theory of rough sets[J]. Pattern Recognition and Artificial Intelligence, 2002, 15(3):280-284. [10] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy roughsets[J]. International Journal of General Systems, 1990, 17(2/3):191-209. [11] LIU Guilong. The axiomatization of the rough set upper approximation operations[J]. Fundamenta Informaticae, 2006, 69(3):331-342. [12] WU Weizhi, MI Jusheng, ZHANG Wenxiu. Generalized fuzzy rough sets[J]. Information Sciences, 2003, 151:263-282. [13] RADZIKOWSKA A M. On lattice-based fuzzy rough sets[M] //CORNELIS C G, DESCHRIJVER M, NACHTEGAEL S, et al. Years of Fuzzy Set Theory. Berlin: Springer, 2010:107-126. [14] RADZIKOWSKA A M, KERRE EE. Fuzzy rough sets based on residuated lattices[J]. Lecture Notes in Computer Science, 2005, 3135:278-296. [15] SHE Yanhong, WANG Guojun. An axiomatic approach of fuzzy rough sets based on residuated lattices[J]. Computers and Mathematics with Applications, 2009, 58(1):189-201. [16] DENG Tingquan, CHEN Yanmei, XU Wenli, et al. A novel approach to fuzzy rough sets based on a fuzzy covering[J]. Information Sciences, 2007, 177(11):2308-2326. [17] FENG Tao, ZHANG Shaopu, MI Jusheng. The reduction and fusion of fuzzy covering systems based on the evidence theory[J]. International Journal of Approximate Reasoning, 2012, 53(1):87-103. [18] LI T J, LEUNG Y, ZHANG W X. Generalized fuzzy rough approximation operators based on fuzzy coverings[J]. International Journal of Approximate Reasoning, 2008, 48(3):836-856. [19] DEER L, CORNELIS C, GODO L. Fuzzy neighborhood operators based on fuzzy coverings[J]. Fuzzy Sets and Systems, 2017, 312:17-35. [20] YAO Wei, SHE Yanhong, LU Lingxia. Metric-based L-fuzzy rough sets: approximation operators and definable sets[J]. Knowledge-Based Systems, 2019, 163:91-102. [21] YAO Wei, ZHANG Guangxu, ZHOU Changjie. Real-valued hemimetric-based fuzzy rough sets and an application to contour extraction of digital surfaces[J]. Fuzzy Sets and Systems, 2023, 459:201-219. [22] GOUBAULT-LARRECQ J. Non-Hausdorff topology and domain theory[M]. Cambridge: Cambridge University Press, 2013: 1-10. [23] ZADEH L A. Similarity relations and fuzzy orderings[J]. Information Sciences, 1971, 3(2):177-200. [24] YAO Wei, ZHANG Guangxu, SHI Yi. Type-2 lattice-valued preorders: a common framework of lattice-valued preorders and various kinds of metrics[J]. Iranian Journal of Fuzzy Systems, 2023, 20(3):191-203. [25] ZHANG Guangxu, YAO Wei. Fuzzy rough sets based on modular hemimetrics[J]. Soft Computing, 2023, 27:4393-4401. [26] ZHANG Guangxu, YAO Wei. Fuzzy rough sets based on Morsi fuzzy hemimetrics[J]. Hacettepe Journal of Mathematics and Statistics, 2024, 53(1):107-120. [27] 杨俊. 基于乘除法的模糊预序型模糊粗糙集[D]. 南京:南京信息工程大学,2023. YANG Jun. Fuzzy preorder based fuzzy rough sets using multiplication and division[D]. Nanjing: Nanjing University of Information Science and Technology, 2023. [28] KLEMENT E P, MESIAR R, PAP E. Triangular norms[M]. Dordrecht: Kluwer Academic Publishers, 2000. [29] 张小红,裴道武,代建华. 模糊数学与Rough集理论[M]. 北京:清华大学出版社,2013:116. ZHANG Xiaohong, PEI Daowu, DAI Jianhua. Fuzzy mathematics and rough sets theroy[M]. Beijing: Tsinghua University Press, 2013:116. [30] DEER L, CORNELIS C, YAO Y Y. A semantically sound approach to Pawlak rough sets and covering-based rough sets[J]. International Journal of Approximate Reasoning, 2016, 78(11):62-72. [31] RALEVIC N M, KARAKLIC D, PIŠTINJAT N. Fuzzy metric and its applications in removing the imagenoise[J]. Soft Computing, 2019, 23(22):12049-12061. |
| [1] | 李文焱,李丽红,王洪欣. 基于知识度量的模糊粗糙c-均值算法[J]. 《山东大学学报(理学版)》, 2026, 61(1): 49-64. |
| [2] | 李心如,李令强,贾成昭. 新型多粒度变精度(*,·)-模糊粗糙集[J]. 《山东大学学报(理学版)》, 2025, 60(7): 131-142. |
| [3] | 吴凡,孔祥智. 基于模糊信息系统的模糊β-覆盖粗糙集模型[J]. 《山东大学学报(理学版)》, 2023, 58(5): 10-16. |
| [4] | 熊兴国,路玲霞. 基于MV-代数的度量型模糊粗糙集[J]. 《山东大学学报(理学版)》, 2019, 54(11): 81-89. |
| [5] | 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36. |
| [6] | 罗海燕, 吕萍, 刘林忠, 杨洵. 云环境下基于模糊粗糙AHP的企业信任综合评估[J]. 山东大学学报(理学版), 2014, 49(08): 111-117. |
| [7] | 鲁小云1,杨勇2. 单向S-模糊粗糙集及其应用[J]. J4, 2011, 46(8): 110-113. |
| [8] | 林梦雷1,杨伟萍2. 蕴涵区间直觉模糊粗糙集及其性质[J]. J4, 2011, 46(8): 104-109. |
|
||