山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (4): 56-60.doi: 10.6040/j.issn.1671-9352.0.2016.224
董莉
DONG Li
摘要: 对带有强阻尼项和频散项的非线性黏弹方程和非线性Petrovsky方程的初边值问题进行研究,在方程的解爆破的前提下,通过适当的扰动得到爆破时间的下确界。
中图分类号:
[1] GEORGIEV V, TODOROVA G. Existence of solutions of the wave equation with nonlinear damping and source terms[J]. J Differential Equations, 1994, 109:295-308. [2] MESSAOUDI S A. Blow up and global existence in a nonlinear viscoelastic wave equation[J]. Math Nachr, 2003, 260:58-66. [3] YANG Zhifeng. Blow-up of solutions for a viscoelastic equation with nonlinear damping[J].Central Eur J Math, 2008, 6(4):568-575. [4] BERRIMI S, MESSAOUDI S A. Existence and decay of solutions of a viscoelastic equation with a nonlinear source[J].Nonlinear Anal, 2006, 64:2314-2331. [5] Messaoudi S A. Global existence and nonexistence in s system of Petrovsky equation[J]. Nonlinear Anal, 2009, 70:296-308. [6] LIANG Feng, GAO Hongjun. Exponential energy decay and blow-up of solutions for a system of nonlinear Viscoelastic wave equations with strong damping[J].Bound Value Probl, 2011, 1:3-19. [7] WU Shuntang. General decay of solutions for a viscoelastic equation with nonlinear damping and source terms[J].Acta Math Sci Ser, 2011, 31(4)1436-1448. [8] GAO Qingyong, LI Fushan, WANG Yanguo. Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipayion[J].Central Eur J Math, 2011, 9(3):686-698. [9] XU Runzhang, YANG Yanbing, LIU Yacheng. Global well-posedness for strongly damped viscoelastic wave equation[J]. Appl Anal, 2013, 92(1):138-157. [10] KAFINI M, MUSTAFA M I. Blow-up result in a cauchy viscoelastic problem with strong damping and dispersive [J].Nonlinear Analysis: Real World Applications, 2014, 20:14-20. [11] TAHAMTANI F, SHAHROUZI M. Existence and blow up of ssolutions to a Petrovsky equation with memory and nonlinear source term[J/OL]. Bound Value Probl, 2012, 2012: 50. https://lnk.springer.com/article/10.1186/1687-2770-2012-50. [12] LI Gang, SUN Yun, LIU Wenjun. On asymptotic behavior and blow up of solutions for a nonlinear viscoelastic petrovsky equation with positive initial energy[J]. J Funct Spance Appl, 2013(2103)905867. [13] LI Fushan, GAO Qingyong. Blow-up of solution for a nonlinear Petrovsky type equation with memoey[J]. Applied Mathematics and Computation, 2016, 274:383-392. [14] CAVALCANTI M M, CAVALCANTI V N D, FERRIRA J. Existence and uniform decay for nonlinear viscoelastic equation with strong damping[J].Math Methods Appl Sci, 2011, 24:1043-1053. [15] GEORGIEV V, TODOROVA G. Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation[J]. Phys D: Nonlinear Phenomena, 2008, 237:721-731. [16] MESSAOUDI S A. Global existence and nonexistence in a system of petrovsky[J]. J Math Anal Appl, 2002, 265: 296-308. [17] PHILIPPIN G A. Lower bounds for blow-up time in a class of nonlinear wave equation[J]. Z Angew Math Phys, 2015, 66:129-134. |
[1] | 刘洋,达朝究,李富明. Nehari流形在一类半线性抛物方程爆破中的应用[J]. 山东大学学报(理学版), 2016, 51(1): 123-127. |
[2] | 吕红杰, 刘静静, 齐静, 刘硕. 弱耗散μ-Hunter-Saxton方程的爆破[J]. 山东大学学报(理学版), 2015, 50(05): 55-59. |
[3] | 林春进1,徐国静2. 高维Kaniadakis-Quarati 方程的有限时间爆破[J]. 山东大学学报(理学版), 2014, 49(06): 79-84. |
[4] | 宋丹丹,原保全*. 可压缩磁流体方程组的显式爆破解[J]. J4, 2012, 47(2): 26-30. |
[5] | 代丽美. 完全非线性一致椭圆方程的边界爆破问题[J]. J4, 2011, 46(6): 34-36. |
[6] | 阎小丽,原保全*. 欧拉方程的显式爆破解[J]. J4, 2011, 46(12): 104-107. |
[7] | 李凤萍. 三维广义磁流体方程组解的爆破准则[J]. J4, 2010, 45(4): 90-94. |
[8] | 陆求赐1,曾有栋2. 非局部波动方程组解的半无界问题[J]. J4, 2010, 45(10): 104-108. |
|