您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (08): 73-79.doi: 10.6040/j.issn.1671-9352.1.2014.089

• 论文 • 上一篇    下一篇

相容粗糙模糊集模型

翟俊海1,2, 张垚1, 王熙照1,2   

  1. 1. 河北大学数学与计算机学院, 河北 保定 071002;
    2. 河北省机器学习与计算智能重点实验室, 河北 保定 071002
  • 收稿日期:2014-04-15 修回日期:2014-07-01 发布日期:2014-09-24
  • 基金资助:
    国家自然科学基金资助项目(61170040,71371063);河北省自然科学基金资助项目(F2013201110,F2013201220);河北省高等学校科学研究重点项目(ZD20131028);河北省教育厅资助项目(Z2012101)

Tolerance rough fuzzy set model

ZHAI Jun-hai1,2, ZHANG Yao1, WANG Xi-zhao1,2   

  1. 1. College of Mathematics and Computer Science, Hebei University, Baoding 071002, Hebei, China;
    2. Key Lab. of Machine Learning and Computational Intelligence, Hebei University, Baoding 071002, Hebei, China
  • Received:2014-04-15 Revised:2014-07-01 Published:2014-09-24
  • Supported by:
    翟俊海(1964-),男,博士,教授,研究方向为机器学习与模式识别.E-mail:mczjh@126.com

摘要: 在粗糙模糊集模型中,被逼近的目标概念是一个模糊集,使用的知识是等价关系,即描述对象的属性是离散值的。但在很多实际应用中,描述对象的属性是实数值的。针对这一问题,将粗糙模糊集模型中的等价关系推广为相容关系,提出了相容粗糙模糊集模型。当相容关系退化为等价关系时,相容粗糙模糊集模型即为粗糙模糊集模型。相容粗糙模糊集模型扩展了粗糙模糊集的应用范围。

关键词: 粗糙集, 粗糙模糊集, 模糊集, 相容粗糙集, 相容粗糙模糊集

Abstract: In rough fuzzy set model, the approached target concept is a fuzzy set, the knowledge used for approaching the target concept is equivalence relation, in other words, the attributes used for representing the object is of discrete value. However, in many practical applications, the attributes used for representing the object is of real value. In order to deal with this problem, the equivalence relation in rough fuzzy set model is extended to tolerance relation; the tolerance rough fuzzy set model is proposed. When the tolerance relation is degenerated into equivalence relation, the tolerance rough fuzzy set model becomes the rough fuzzy set model; tolerance rough fuzzy set model extends the application of rough fuzzy set.

Key words: rough set, fuzzy set, tolerance rough set, tolerance rough fuzzy set, rough fuzzy set

中图分类号: 

  • TP181
[1] PAWLAK Z. Rough sets[J]. International Journal of Information and Computer Sciences, 1982, 11(5):341-356.
[2] ZHAI Junhai, GAO Yuanyuan, ZHAI Mengyao, et al. Rough set model and its eight extensions[C]//2011 IEEE International Conference on Systems Man and Cybernetics. Anchorage, Alaska, USA:[s.n.], 2011: 3512-3517.
[3] ZIARKO W. Variable precision rough set model[J]. Journal of Computer and System Sciences, 1993, 46:39-59.
[4] WONG S K W, ZIARKO W. Comparison of the probabilistic approximate classification and the fuzzy set model[J]. Fuzzy Sets and Systems, 1987, 21(3):357-362.
[5] YAO Yi-yu, WONG S K M. A decision theoretic framework for approximating concepts[J]. International Journal of Man-machine Studies, 1992, 37:793-809.
[6] YAO Yiyu. Generalized rough set models[M]//Polkowski L, Skowron A. Rough Sets in Knowledge Discovery, Heidelberg: Physica-Verlag, 1998: 286-318.
[7] SKOWRON A. Tolerance approximation spaces[J]. Fundamenta Informaticae, 1996, 27(2-3):245-253.
[8] GRECO S, MATARAZZO B, SLOWINSKI R. Rough Approximation of a preference relation by dominance relations[J]. European Journal of Operational Research, 1999, 117:63-83.
[9] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General Systems, 1990, 17:191-208.
[10] ALICJA M R, LESZEK R. Variable precision fuzzy rough sets[J]. Transactions on Rough Sets I, Lecture Notes in Computer Science, 2004, 3100:144-160.
[11] S'LEZAK D, ZIARKO W. Variable Precision Bayesian Rough Set Model. Rough Sets[M] Fuzzy Sets, Data Mining, and Granular Computing, Lecture Notes in Computer Science, Berlin, Heidelberg: Springer-Verlag, 2003, 2639:312-315.
[12] 翟俊海,翟梦尧,高原原,等. 变精度相容粗糙集模型[J]. 计算机工程与应用, 2012, 48(26):134-138. ZHAI Junhai, ZHAI Mengyao, GAO Yuanyuan, et al. Model of variable precision tolerance rough set[J]. Computer Engineering and Applications, 2012, 48(26):134-138.
[13] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8:338-353.
[14] YAO Yiyu. Combination of rough and fuzzy sets based on α-level sets[M]//LIN Tong-yan, Cercone N. Rough Sets and Data Mining-Analysis of Imprecise Data, Heidelberg: Physica-Verlag, 1997: 301-321.
[1] 李同军,黄家文,吴伟志. 基于相似关系的不完备形式背景属性约简[J]. 山东大学学报(理学版), 2018, 53(8): 9-16.
[2] 左芝翠,张贤勇,莫智文,冯林. 基于决策分类的分块差别矩阵及其求核算法[J]. 山东大学学报(理学版), 2018, 53(8): 25-33.
[3] 李丽,管涛,林和. 基于泛系算子的泛系混合并联粗糙集模型[J]. 山东大学学报(理学版), 2017, 52(7): 22-29.
[4] 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36.
[5] 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104.
[6] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
[7] 彭家寅. 关联模糊集理论的伪BL-代数的软滤子[J]. 山东大学学报(理学版), 2015, 50(08): 40-45.
[8] 吴正江, 刘永利, 高岩. 拟单层覆盖上的覆盖粗糙集族[J]. 山东大学学报(理学版), 2014, 49(08): 6-14.
[9] 林姿琼, 王敬前, 祝峰. 矩阵方法计算覆盖粗糙集中最小、最大描述[J]. 山东大学学报(理学版), 2014, 49(08): 97-101.
[10] 石素玮, 李进金, 谭安辉. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(08): 86-91.
[11] 安秋生, 孔祥玉. 函数依赖与多值依赖的再研究[J]. 山东大学学报(理学版), 2014, 49(08): 1-5.
[12] 罗海燕, 吕萍, 刘林忠, 杨洵. 云环境下基于模糊粗糙AHP的企业信任综合评估[J]. 山东大学学报(理学版), 2014, 49(08): 111-117.
[13] 张海东1,贺艳平2. 广义区间值模糊粗糙集模型及其公理化特性[J]. J4, 2013, 48(09): 56-63.
[14] 李晓萍1,孙刚2. 直觉模糊全不变子群与特征子群[J]. J4, 2012, 47(2): 119-122.
[15] 冯林1,2,罗芬3,方丹3,原永乐2. 基于改进扩展正域的属性核与属性约简方法[J]. J4, 2012, 47(1): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!