您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (08): 66-72.doi: 10.6040/j.issn.1671-9352.1.2014.155

• 论文 • 上一篇    下一篇

基于三支决策风险最小化的风险投资评估应用研究

杜丽娜1,2, 徐久成1,2, 刘洋洋1,2, 孙林1,2   

  1. 1. 河南师范大学计算机与信息工程学院, 河南 新乡 453007;
    2. 河南省高校计算智能与数据挖掘工程技术研究中心, 河南 新乡 453007
  • 收稿日期:2014-06-02 修回日期:2014-07-01 发布日期:2014-09-24
  • 通讯作者: 徐久成(1964-),男,博士,教授,博士生导师,研究方向为粒计算、数据挖掘、生物信息学、三支决策等.E-mail:xjc@htu.cn E-mail:xjc@htu.cn
  • 作者简介:杜丽娜(1989-),女,硕士研究生,研究方向为粒计算、三支决策.E-mail:lina_Du1121@126.com

Research on the evaluation of venture investment based on the risk minimization of three-way decision

DU Li-na1,2, XU Jiu-cheng1,2, LIU Yang-yang1,2, SUN Lin1,2   

  1. 1. College of Computer & Information Engineering, Henan Normal University, Xinxiang 453007, Henan, China;
    2. Engineering Technology Research Center for Computing Intelligence & Data Mining, Henan Province, Xinxiang 453007, Henan, China
  • Received:2014-06-02 Revised:2014-07-01 Published:2014-09-24

摘要: 针对风险投资评估过程中,模糊综合评判法中作为状态集函数的模糊隶属度不满足“归一性条件”和“可加性原则”,以及模糊集的max-min运算会损失许多有用信息的问题,将贝叶斯原理和基于决策粗糙集的三支决策规则引入到模糊综合评判中,用风险损失函数定义一个风险评判因子,构造一个新的风险评判矩阵,提出基于三支决策风险最小化的风险投资评判模型。然后,按照风险最小化原则取风险损失值最小的决策方式作为评估结果,从而解决了模糊综合评判法中存在的问题,使评价结果更合理,更准确。

关键词: 风险投资, 三支决策, 风险最小化, 模糊综合评判

Abstract: Aiming to deal with those problems that the fuzzy membership degree which acts as the state function dose not satisfy the normalization and additivity, and the max-min operation of fuzzy sets will lose a lot of useful information in the evaluation of the venture investment, in this paper, the Bayesian theory and the three-way decisions was introduced into the fuzzy comprehensive evaluation model. A risk factor was defined with the risk function and a new risk evaluation matrix was constructed, then a new evaluation model of venture investment was proposed based on the risk minimization of three-way decisions. After that, the minimum loss decision is taken according to the risk minimization principle, thus the problems existing in the fuzzy comprehensive evaluation method are solved and the evaluation results are more reasonable and more accurate.

Key words: risk minimization, three-way decision, fuzzy comprehensive evaluation, venture investment

中图分类号: 

  • TP18
[1] YAO Yi-yu. Decision-theoretic rough set models[C]//Lecture Notes in Artificial Intelligence 4481:Proceedings of the 2nd International Conference on Rough Sets and Knowledge Technology (RSKT 2007), Toronto, Canada:[s.n.], 2007:1-12.
[2] YAO Yiyu. Three-way decision:An interpretation of rules in rough set theory[C]//Lecture Notes in Artificial Intelligence 5589:Proceedings of the 4th International Conference on Rough Sets and Knowledge Technology (RSKT 2009), Gold Coast, Australia:[s.n.], 2009:642-649.
[3] YAO Yiyu. Three-way decisions with probabilistic rough sets[J]. Information Sciences, 2010, 180:341-353.
[4] YAO Yiyu. The superiority of three-way decision in probabilistic rough set models[J]. Information Sciences, 2011, 181:1080-1096.
[5] 刘盾, 李天瑞, 李华雄. 粗糙集理论:基于三支决策视角[J]. 南京大学学报:自然科学版, 2013, 49(5):574-581. LIU Dun, LI Tianrui, LI Hua-xiong. Rough set theory:A three-way decisions perspective[J].Journal of Nanjing university:Natural Sciences, 2013, 49(5):574-581.
[6] MA W M, SUN B Z. On relationship between probabilistic rough set and Bayesian risk decision over two universes[J]. International Journal of General Systems, 2012, 41(3):225-245.
[7] YANG X P, YAO Jingtao. Modeling multi-agent three-way decisions with decision-theoretic rough sets[J]. Fundamenta Informaticae, 2012, 115:157-171.
[8] LI Huaxiong, ZhOU Xianzhong. Risk decision making based on decision-theoretic rough set:a multi-view decision model[J]. International Journal of Computational Intelligence Systems, 2011, 4(1):1-11.
[9] 李华雄, 周献中, 黄兵, 等. 决策粗糙集与代价敏感分类[J]. 计算机科学与探索, 2013, 7(2):126-135. LI Huaxiong, ZHOU Xianzhong, HUANG Bing, et al. Decision-theoretic rough set and cost-sensitive classification[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(2):126-135.
[10] 贾修一, 商琳, 陈家骏. 决策风险最小化属性约简[J]. 计算机科学与探索, 2011, 5(2):155-160. JIA Xiuyi, SHAGN Lin, CHEN Jiajun. Attribute reduction based on minimum decision cost[J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(2):155-160.
[11] HERBERT J P, YAO Jingtao. Game-theoretic risk analysis in decision-theoretic rough sets[C]//Proceedings of the 3rd International Conference on Rough Sets and Knowledge Technology (RSKT'08), Chengdu, China, 2008. Berlin, Heidelberg:Springer-Verlag, 2008:132-139.
[12] LIU Dun, LI Tian-rui, LI Hua-xiong. A multiple-category classification approach with decision-theoretic rough sets[J]. Fundamenta Informaticae, 2012, 115(2/3):173-188.
[13] TYEBJEE T T, BRUNO A V. A model of venture capitalist investment activity[J]. Management Science, 1984:1051-1066.
[14] KOSKI T M. Using fuzzy set theory in assessing the success potential of venture capital investment theory and pilot field study[J]. International Journal of Entrepreneurship and Innovation Management, 2003:509-524.
[15] 黄兰敏, 吴艳. 风险投资评估的模糊数学模型[J]. 重庆工商大学学报:西部论坛, 2006, 16 (2). HUANG Lanmin, WU Yan. The Fuzzy mathematics model of risk investment evaluation[J]. Journal Chongqing Technology Business University(West Forum), 2006, 16 (2).
[16] 刘开第, 庞彦军, 吴和琴. 模糊隶属度定义中隐含的问题[J]. 系统工程理论与实践, 2000, 20(1):110-112. LIU Kaidi, PANG Yanjun, WU Heqin. The Problems in the Definition of Fuzzy Subordinative Degree[J]. Journal Systems Engineering-Theory & Practice, 2000, 20(1):110-112.
[17] ZHAO Y, WONG S K M, YAO Yiyu. A note on attribute reduction in the decision-theoretic rough set model[C]//Lecture Notes in Artificial Intelligence 5306:Proceedings of the 6th International Conference on Rough Sets and Current Trends in Computing (RSCTC 2008), Akron, Ohio, USA:[s.n.], 2008:61-70.
[18] 衷锦仪, 叶东毅. 基于模糊数风险最小化的拓展决策粗糙集模型[J]. 计算机科学, 2014, 41(3):50-53. ZHONG Jinyi, YE Dongyi. Extenden decision-theoretic rough set models based on fuzzy minimum cost[J]. Computer Science, 2014, 41(3):50-53.
[19] 苏江. 高新技术企业风险投资评估研究[J]. 科技进步与对策, 2013, 30(09):124-127. SU Jiang. The research of high and new technology enterprise risk investment evaluation[J]. Science & Technology Progress and Policy, 2013, 30(09):124-127.
[20] 王庆, 陈果, 刘敏. 基于价值-风险双准则的风险决策理论[J]. 中国管理科学, 2014, 22(3):42-50. WANG Qing, CHEN Guo, LIU Min. A new risk decision-making theory:Based on value and risk[J]. Chinese Journal of Management Science, 2014, 22(3):42-50.
[21] ITXASO del-Palacio, XIAOTIAN Tina Zhang, FRAN-CESC Sole. The capital gap for small technology companies:public venture capital to the rescue? [J]. Small Business Economics, 2012, 38(3):283-301.
[1] 刘国涛,张燕平,徐晨初. 一种优化覆盖中心的三支决策模型[J]. 山东大学学报(理学版), 2017, 52(3): 105-110.
[2] 张聪, 于洪. 一种三支决策软增量聚类算法[J]. 山东大学学报(理学版), 2014, 49(08): 40-47.
[3] 田海龙, 朱艳辉, 梁韬, 马进, 刘璟. 基于三支决策的中文微博观点句识别研究[J]. 山东大学学报(理学版), 2014, 49(08): 58-65.
[4] 张里博, 李华雄, 周献中, 黄兵. 人脸识别中的多粒度代价敏感三支决策[J]. 山东大学学报(理学版), 2014, 49(08): 48-57.
[5] 李 新 . 基于不确定性推理与Fuzzy评判模型的智能选药系统[J]. J4, 2008, 43(11): 36-39 .
[6] 徐 选,丁 伟 . 用于邮件过滤的标准样本生成系统研究[J]. J4, 2006, 41(3): 85-89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!