您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (08): 80-85.doi: 10.6040/j.issn.1671-9352.1.2014.009

• 论文 • 上一篇    下一篇

基于邻域的覆盖粗糙集的上近似拟阵结构

李清银, 祝峰   

  1. 闽南师范大学福建省粒计算及其应用重点实验室, 福建 漳州 363000
  • 收稿日期:2014-06-02 修回日期:2014-07-08 发布日期:2014-09-24
  • 通讯作者: 祝峰(1962-),男,博士,教授,研究方向为人工智能、粗糙集、拟阵.E-mail:williamfengzhu@gmail.com E-mail:williamfengzhu@gmail.com
  • 作者简介:李清银(1989-),女,硕士研究生,研究方向为粗糙集、拟阵.E-mail:lqyin12@126.com
  • 基金资助:
    国家自然科学基金资助项目(61170128;61379049),福建省教育厅科技重点项目(JA13192);漳州市科技局云计算教育平台的设计与实施项目(Z2011001)资助

Matroidal structure of the upper approximation of covering-based rough set defined by the neighborhood

LI Qing-yin, ZHU William   

  1. Lab of Granular Computing, Minnan Normal University, Zhangzhou 363000, Fujian, China
  • Received:2014-06-02 Revised:2014-07-08 Published:2014-09-24

摘要: 通过邻域,构造了一个覆盖粗糙集的上近似拟阵结构。借助拟阵理论中的横贯理论和基公理,建立了这个拟阵。利用补邻域的下近似等价表示了一个与邻域相关的集族。最后从基数的角度研究了这个集族为这个拟阵的全体超平面的一个充要条件。

关键词: 邻域, 近似算子, 覆盖, 基, 超平面, 拟阵

Abstract: By neighborhoods, a matroidal structure of the upper approximation of covering-based rough sets is constructed. Through transversal theory and base axioms, the matroidal structure is established. By the lower approximations of the complementary neighborhood, a family related to neighborhoods is equivalent represented. Finally, a sufficient and necessary condition for the family to be the set of all hyperplanes of the matroid is studied from the viewpoint of cardinality.

Key words: hyperplane, neighborhood, matroid, base, covering, approximation operator

中图分类号: 

  • TP18
[1] HU Qinghua, YU Daren, LIU Jinfu, et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Information sciences, 2008, 178(18):3577-3594.
[2] ZAKOWSKI W. Approximations in the space(U,π)[J]. Demonstration Mathematica, 1983, 16(40):761-769.
[3] POMYKALA J A. Approximation operations in approximation space[J]. Bulletin of the Polish Academy of Sciences, 1987, 35(9-10):653-662.
[4] TSANG E C C, CHEN Degang, LEE J W T, et al. On the upper approximations of covering generalized rough sets[C]//Proceedings of the 3rd International Conference on Machine Learning and Cybernetics. Shanghai: IEEE Computer Society, 2004: 4200-4203.
[5] ZHU William. Topological approaches to covering rough sets[J]. Information Sciences, 2007, 177(6):1499-1508.
[6] DUBOIS D, PRADE H. Rough fuzzy set and fuzzy rough sets[J]. International Journal of General Systems, 1990, 17(2-3):191-209.
[7] WANG Shiping, ZHU Willian, ZHU Qingxin, et al. Four matroidal structures of covering and their relationships with rough sets[J]. International Journal of Approximate Reasoning, 2013, 54(9):1361-1372.
[8] 赖虹建. 拟阵论[M]. 北京:高等教育出版社,2001. LAI Hongjian. Matroid theory[M]. Beijing: Higher Education Press, 2001.
[9] 管红波,田大钢.基于属性重要性的决策树规则提取算法[J]. 系统工程与电子技术,2004;26(3):334-337. GUAN Hongbo, TIAN Dagang. Rule abstracting algorithm by decisive tree based on the importance of attribute[J]. Systems Engineering and Electronics, 2004, 26(3):334-337.
[10] BONIKOWSKI Z, BRYNIARSKI E, WYBRANIEC-SKARDOWSKA U. Extensions and intensions in the rough set theory[J]. Information Sciences, 1998, 107(1-4):149-167.
[11] ZHU William, WANG Feiyue. On three types of covering-based rough sets[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(8):1131-1144.
[12] MA Liwen. On some types of neighborhood-related covering rough sets[J]. International Journal of Approximate Reasoning, 2010, 53(6):901-911.
[13] WANG Changzhong, CHEN Degang, SUN Baiqing, et al. Communication between information systems with covering based rough sets[J]. Information Sciences, 2012, 216:17-33.
[14] ZHU William, WANG Shiping. Matroidal approaches to generalized rough sets based on relations[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(4):273-279.
[15] WANG Shiping, ZHU William. Matroidal structure of covering-based rough sets through the upper approximation number[J]. International Journal of Granular Computing, Rough Sets and Intelligent Systems, 2011, 2(2):141-148.
[1] 张建标,李志刚,刘国杰,王超,王玮. 面向Windows环境进程主动动态度量方法[J]. 山东大学学报(理学版), 2018, 53(7): 46-50.
[2] 何新华,万帆,胡文发,郑爱兵. 复杂风险变量随机模拟下的应急供应调度[J]. 山东大学学报(理学版), 2018, 53(5): 1-11.
[3] 原伟,易绵竹. 基于维基百科的俄汉可比语料库构建及可比度计算[J]. 山东大学学报(理学版), 2017, 52(9): 1-6.
[4] 王霞,张茜,李俊余,刘庆凤. 基于粗糙集的三元概念分析[J]. 山东大学学报(理学版), 2017, 52(7): 37-43.
[5] 罗鹏,杨晓元. 基于环签名的支持多PKG身份基加密方案[J]. 山东大学学报(理学版), 2017, 52(6): 64-68.
[6] 樊廷俊,单鸣,庞鑫. 一种新型脱细胞猪角膜基质载体支架的制备及其鉴定研究[J]. 山东大学学报(理学版), 2017, 52(5): 1-9.
[7] 王威力,胡斌,赵秀凤. 一种高效的多身份全同态加密方案[J]. 山东大学学报(理学版), 2017, 52(5): 85-94.
[8] 徐凤生,于秀清,史开泉. 属性基数余-亏值定理与信息规律动态内-外分离[J]. 山东大学学报(理学版), 2017, 52(4): 87-92.
[9] 陈广瑞,陈兴蜀,王毅桐,葛龙. 一种IaaS多租户环境下虚拟机软件更新服务机制[J]. 山东大学学报(理学版), 2017, 52(3): 60-67.
[10] 刘国涛,张燕平,徐晨初. 一种优化覆盖中心的三支决策模型[J]. 山东大学学报(理学版), 2017, 52(3): 105-110.
[11] 郭华龙,张凌. 数据分离与属性状态特征[J]. 山东大学学报(理学版), 2017, 52(12): 89-94.
[12] 王小青,梁力. 强余挠模的忠实平坦余基变换[J]. 山东大学学报(理学版), 2017, 52(11): 92-94.
[13] 郭洪峰,李瑜斯,孙伟华. 具有点可数弱基及满足开(G)条件的空间有限并的D-性质[J]. 山东大学学报(理学版), 2017, 52(10): 72-76.
[14] 文海燕,刘建成. 伪黎曼空间型中具有常数量曲率的类空子流形[J]. 山东大学学报(理学版), 2017, 52(10): 89-96.
[15] 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!