《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (1): 94-101.doi: 10.6040/j.issn.1671-9352.1.2018.136
王新乐1,2(),杨文峰3,廖华明1,王永庆1,刘悦1,俞晓明1,程学旗1
Xin-le WANG1,2(),Wen-feng YANG3,Hua-ming LIAO1,Yong-qing WANG1,Yue LIU1,Xiao-ming YU1,Xue-qi CHENG1
摘要:
对用户网络结构信息和主题标签的情感性、地域性等信息进行特征分析,提出了一种考虑用户粉丝网络结构特征以及主题标签自身特性的流行度预测模型。实验表明,新提出的特征是有效的,对以后主题标签的流行度预测具有较高的参考价值。
中图分类号:
1 |
吴越, 陈晓亮, 蒋忠远. 微博信息流行度预测研究综述[J]. 西华大学学报(自然科学版), 2017, 36 (1): 1- 6.
doi: 10.3969/j.issn.1673-159X.2017.01.001 |
WU Yue , CHEN Xiaoliang , JIANG Zhongyuan . Survey on predicting popularity of information in microblogs[J]. Journal of Xihua University(Natural Science Edition), 2017, 36 (1): 1- 6.
doi: 10.3969/j.issn.1673-159X.2017.01.001 |
|
2 |
邵健, 章成志, 李蕾. Hashtag研究综述[J]. 现代图书情报技术, 2015, 31 (10): 40- 49.
doi: 10.11925/infotech.1003-3513.2015.10.06 |
SHAO Jian , ZHANG Chengzhi , LI Lei . Survey on Hashtag[J]. New Technology of Library and Information Service, 2015, 31 (10): 40- 49.
doi: 10.11925/infotech.1003-3513.2015.10.06 |
|
3 |
HUGHES A L . Twitter adoption and use in mass convergence and emergency events[J]. International Journal of Emergency Management, 2009, 6 (3/4): 248- 260.
doi: 10.1504/IJEM.2009.031564 |
4 | DELLER R . Twittering on: audience research and participation using Twitter[J]. Participations, 2011, 8 (1): 216- 245. |
5 | SMALL T A . What the Hashtag? a content analysis of canadian politics on twitter[J]. Information, Communication & Society, 2011, 14 (6): 872- 895. |
6 |
SZABO G , HUBERMAN B A . Predicting the popularity of online content[J]. Communications of the Acm, 2010, 53 (8): 80- 88.
doi: 10.1145/1787234.1787254 |
7 | PINTO H, ALMEIDA J M, GONÇALVES M A. Using early view patterns to predict the popularity of youtube videos[C]// Proceedings of the Sixth ACM International Conference on Web Search and Data Mining. Italy: ACM, 2013: 365-374. |
8 | CHENG J, ADAMIC L, DOW P A, et al. Can cascades be predicted?[C]// Proceedings of the 23rd International Conference on World Wide Web. Korea: ACM, 2014: 925-936. |
9 | SHULMAN B, SHARMA A, COSLEY D. Predictability of popularity: gaps between prediction and understanding[C]// Tenth International AAAI Conference on Web and Social Media. Menlo Park: AAAI, 2016. |
10 | BAKSHY E, HOFMAN J M, MASON W A, et al. Everyone's an influencer: quantifying influence on twitter[C]// Proceedings of the Forth International Conference on Web Search and Web Data Mining. Hong Kong: ACM, 2011. |
11 | ROMERO D M, TAN C, UGANDER J. On the interplay between social and topical structure[C]// Seventh International AAAI Conference on Weblogs and Social Media. Menlo Park: AAAI, 2013. |
12 | TSUR O, RAPPOPORT A. What's in a Hashtag? content based prediction of the spread of ideas in microblogging communities[C]// Proceedings of the Fifth International Conference on Web Search and Web Data Mining. Seattle: ACM, 2012. |
13 | YANG J, LESKOVEC J. Patterns of temporal variation in online media[C]// Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. Hong Kong: ACM, 2011: 177-186. |
14 | MATSUBARA Y, SAKURAI Y, PRAKASH B A, et al. Rise and fall patterns of information diffusion: model and implications[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing: ACM, 2012: 6-14. |
15 | FIGUEIREDO F , ALMEIDA J M , GONÇALVES M A , et al. Trendlearner: early prediction of popularity trends of user generated content[J]. Information Sciences, 2016, 349: 172- 187. |
16 |
HU Y , HU C , FU S , et al. Predicting the popularity of viral topics based on time series forecasting[J]. Neurocomputing, 2016, 210: 55- 65.
doi: 10.1016/j.neucom.2015.10.143 |
17 | MA Z , SUN A , CONG G . On predicting the popularity of newly emerging hashtags in Twitter[J]. Journal of the Association for Information Science & Technology, 2014, 64 (7): 1399- 1410. |
[1] | 李妮,关焕梅,杨飘,董文永. 基于BERT-IDCNN-CRF的中文命名实体识别方法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 102-109. |
[2] | 张迪,查东东,刘华勇. 带两类形状参数的三次λμ-α-DP曲线的构造[J]. 《山东大学学报(理学版)》, 2019, 54(9): 114-126. |
[3] | 杨亚茹, 王永庆, 张志斌, 刘悦, 程学旗. 基于多元信息融合的用户关联模型[J]. 《山东大学学报(理学版)》, 2019, 54(9): 105-113. |
[4] | 郝长盈,兰艳艳,张海楠,郭嘉丰,徐君,庞亮,程学旗. 基于拓展关键词信息的对话生成模型[J]. 《山东大学学报(理学版)》, 2019, 54(7): 68-76. |
[5] | 廖祥文,徐阳,魏晶晶,杨定达,陈国龙. 基于双层堆叠分类模型的水军评论检测[J]. 《山东大学学报(理学版)》, 2019, 54(7): 57-67. |
[6] | 徐洋,孙建忠,黄磊,谢晓尧. 基于WiFi定位的区域人群轨迹模型[J]. 《山东大学学报(理学版)》, 2019, 54(5): 8-20. |
[7] | 董哲瑾,王健,钱凌飞,林鸿飞. 一种用户成长性画像的建模方法[J]. 《山东大学学报(理学版)》, 2019, 54(3): 38-45. |
[8] | 王雪梅,陈兴蜀,王海舟,王文贤. 基于标签和分块特征的新闻网页关键信息自动抽取[J]. 《山东大学学报(理学版)》, 2019, 54(3): 67-74. |
[9] | 包恒泽,周栋,吴谈. 融合多源异构网络信息的标签推荐方法[J]. 《山东大学学报(理学版)》, 2019, 54(3): 56-66. |
[10] | 吴洁,朱小飞,张宜浩,龙建武,黄贤英,杨武. 基于用户情感倾向感知的微博情感分析方法[J]. 《山东大学学报(理学版)》, 2019, 54(3): 46-55. |
[11] | 余传明,左宇恒,郭亚静,安璐. 基于复合主题演化模型的作者研究兴趣动态发现[J]. 山东大学学报(理学版), 2018, 53(9): 23-34. |
[12] | 严倩,王礼敏,李寿山,周国栋. 结合新闻和评论文本的读者情绪分类方法[J]. 山东大学学报(理学版), 2018, 53(9): 35-39. |
[13] | 龚双双,陈钰枫,徐金安,张玉洁. 基于网络文本的汉语多词表达抽取方法[J]. 山东大学学报(理学版), 2018, 53(9): 40-48. |
[14] | 原伟,唐亮,易绵竹. 基于本体的俄文新闻话题检测设计与实现[J]. 山东大学学报(理学版), 2018, 53(9): 49-54. |
[15] | 张军,李竞飞,张瑞,阮兴茂,张烁. 基于网络有效阻抗的社区发现算法[J]. 山东大学学报(理学版), 2018, 53(3): 24-29. |
|