您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (10): 95-103.doi: 10.6040/j.issn.1671-9352.0.2019.833

• • 上一篇    下一篇

抽象空间中Hadamard分数阶微分方程奇异边值问题正解的存在性

孙妍妍,刘衍胜   

  1. 山东师范大学数学与统计学院, 山东 济南 250014
  • 出版日期:2020-10-20 发布日期:2020-10-07
  • 作者简介:孙妍妍(1995— ),女,硕士研究生,研究方向为非线性微分方程. E-mail:yysun0321@163.com
  • 基金资助:
    国家自然科学基金资助项目(11671237)

Existence of positive solutions for singular boundary value problems of Hadamard fractional differential equations in abstract space

SUN Yan-yan, LIU Yan-sheng   

  1. School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, Shandong, China
  • Online:2020-10-20 Published:2020-10-07

摘要: 研究了Banach空间中奇异边值问题正解的存在性。通过构造一个特殊的锥,利用严格集压缩算子的不动点指数理论,建立了该边值问题的近似问题至少有两个正解的存在性。然后借助Ascoli-Arzela定理,利用近似问题解序列的相对紧性,得到边值问题至少有两个正解的充分条件。

关键词: Hadamard分数阶导数, 锥, 奇异边值问题

Abstract: The existence of positive solutions of singular boundary value problems in Banach space is investigated. By constructing a new cone and using the fixed point index theory of strict set compression operator, it is established that there are at least two positive solutions for the corresponding approximation of the boundary value problem. Then, using Ascoli-Arzela theorem and the relative compactness of the sequence of solutions, a sufficient condition is obtained for the existence of multiple positive solutions to boundary value problem.

Key words: Hadamard-type fractional derivative, cone, singular boundary value problem

中图分类号: 

  • O175.8
[1] KILBAS A A, TRUJILLO J J. Differential equations of fractional order: methods, results and problems(Ⅰ)[J]. Applicable Analysis, 2001, 78(1):153-192.
[2] KILBAS A A, TRUJILLO J J. Differential equations of fractional order: methods, results and problems(Ⅱ)[J]. Applicable Analysis, 2002, 81(2):435-493.
[3] GUO D J, LAKSHMIKANTHAM V. Nonlinear problems in abstract cones[M]. New York: Academic Press, 1988.
[4] GUO D J, LAKSHMIKANTHAM V, LIU X Z. Nonlinear integrals equations in abstract spaces[M]. Dordrecht: Kluwer Academic Publishers, 1996.
[5] STANEK S. The existence of positive solutions of singular fractional boundary value problems[J]. Computers and Mathematics with Applications, 2011, 62(3):1379-1388.
[6] 刘峰, 魏毅强. 一类分数阶奇异微分方程边值问题正解的存在性[J]. 中北大学学报(自然科学版), 2014, 35(5):515-520. LIU Feng, WEI Yiqiang. The existence of positive solutions for the boundary value problem of a singular fractional differential equation[J]. Journal of North University of China(Natural Science Edition), 2014, 35(5):515-520.
[7] XU Xiaojie, ZHANG Huina. Multiple positive solutions to singular positone and semipositone m-point boundary value problems of nonlinear fractional differential equations[J]. Boundary Value Problems, 2018, 34:2-18.
[8] 郭大钧. 非线性泛函分析[M]. 济南: 山东科学技术出版社, 1985. GUO Dajun. Nonlinear function analysis[M]. Jinan: Shandong Science and Technology Publishing House, 1985.
[9] AHMAD B, ALSAEDI A, NTOUYAS S K, et al. Hadamard-type fractional differential equations, inclusions and inequalities[M]. New York: Springer International Publishing, 2017.
[10] KILBAS A A. Hadamard-type fractional calculus[J]. Journal of the Korean Mathematical Society, 2001, 38(6):1191-1204.
[11] YUAN Chengjun. Multiple positive solutions for(n-1,n)-type semipositone conjugate boundary value problems of nonlinear fractional differential equations[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2010, 36(1):1-12.
[12] JIANG Jiqiang, LIU Weiwei, WANG Hongchuan. Positive solutions to singular Dirichlet-type boundary value problems of nonlinear fractional differential equations[J]. Advances in Difference Equations, Springer, 2018, 169:2-14.
[13] 王家玉, 刘衍胜. 抽象空间中二阶非线性奇异边值问题的正解[J]. 工程数学学报, 2009, 26(1):113-117. WANG Jiayu, LIU Yansheng. Positive solutions to boundary value problems for second-order nonlinear singular differential equations in abstract space[J]. Chinese Journal of Engineering Mathematics, 2009, 26(1):113-117.
[14] LIU Yansheng. Multiple positive solutions to fourth-order singular boundary value problems in abstract spaces[J]. Electronic Journal of Differential Equations, 2004, 120:1-13.
[1] 马满堂. 一类非线性二阶系统周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 88-95.
[2] 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36.
[3] 亓婷婷, 张振福, 刘衍胜. 一类具有耦合积分边值条件的分数阶微分系统正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(2): 71-78.
[4] 崔玉军,赵聪. 四阶微分方程奇异边值问题解的唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 73-76.
[5] 岳园,田双亮,陈秀萍. 部分实现组合电路的等价验证优化算法[J]. 山东大学学报(理学版), 2016, 51(3): 116-121.
[6] 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53.
[7] 徐言超. 连续时间正系统的静态输出反馈鲁棒H控制[J]. 山东大学学报(理学版), 2016, 51(12): 87-94.
[8] 郑春华, 刘文斌. 一类具有时滞的分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2015, 50(03): 73-79.
[9] 徐义红, 韩倩倩,汪涛,吕强. 集值优化问题ε-强有效元的Lagrange型最优性条件[J]. J4, 2013, 48(3): 80-83.
[10] 范进军,张雪玲,刘衍胜. 时间测度上带p-Laplace算子的m点边值问题正解的存在性[J]. J4, 2012, 47(6): 16-19.
[11] 王明高1,2, 唐秋云3. 半直线上奇异微分方程组边值问题多个正解的存在性[J]. J4, 2011, 46(6): 64-66.
[12] 田应强,贾梅,柳树. 含积分边界条件的三阶常微分方程边值问题正解的存在性[J]. J4, 2011, 46(2): 22-28.
[13] 汤京永1,2,贺国平3. 二阶锥规划的原始-对偶不可行内点法[J]. J4, 2011, 46(11): 96-100.
[14] 路慧芹. 一类非线性悬臂梁方程正解的存在性[J]. J4, 2011, 46(1): 81-86.
[15] 王新华, 张兴秋. 具有Sturm-Liouville边界条件的四阶奇异微分方程正解的存在性[J]. J4, 2010, 45(8): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[2] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[3] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[4] 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65 -71 .
[5] 伍芸1,2, 韩亚蝶1. 一类临界位势非线性椭圆型方程非平凡解的存在性[J]. J4, 2013, 48(4): 91 -94 .
[6] 李世龙,张云峰 . 一类基于算术均差商的有理三次插值样条的逼近性质[J]. J4, 2007, 42(10): 106 -110 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 吴志军,沈丹丹. 基于信息综合集成共享的下一代网络化全球航班追踪体系结构及关键技术[J]. 山东大学学报(理学版), 2016, 51(11): 1 -6 .