您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (11): 38-42.doi: 10.6040/j.issn.1671-9352.4.2021.227

• • 上一篇    

GM(1,1)模型的性质及改进

潘澔1,高尚2*   

  1. 1.苏州建设交通高等职业技术学校, 江苏 苏州 215104;2.江苏科技大学计算机科学与工程学院, 江苏 镇江 212003
  • 发布日期:2021-11-15
  • 作者简介:潘澔(1970— ),硕士,副教授,研究方向为智慧校园. E-mail:szph5122@163.com*通信作者简介:高尚(1972— ),博士,教授,研究方向为智能计算、模式识别. E-mail:gao_shang@just.edu.cn

Properties and improvement of GM(1,1)models

PAN Hao1, GAO Shang2*   

  1. 1. Suzhou Institute of Construction &
    Communications, Suzhou 215104, Jiangsu, China;
    2. School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
  • Published:2021-11-15

摘要: 在对GM(1,1)模型进行分析的基础上,经过理论推导,得出了初始数对预测没有影响的结论,对GM(1,1)模型进行改进,给出了GM(1,1)模型Ⅰ。当向原始序列添加相同的数字时,预测值将更改,由此提出了GM(1,1)模型Ⅱ,利用粒子群算法,得到最佳的增加量。仿真结果表明,GM(1,1)模型Ⅰ和模型Ⅱ具有较高的精度。

关键词: GM(1,1)模型, 简化, 精度, 粒子群优化算法

Abstract: Based on theoretical analysis of GM(1,1)model, the conclusion, which the initiative number has no effect on the prediction, is got. GM(1,1)model is improved and GM(1,1)model I is given. When add an identical number to the original series, the forecast values will change. GM(1, 1)model Ⅱ is given, and using particle swarm algorithm, the best increase is got. Simulation results show that the improved GM(1, 1)model Ⅰ and GM(1, 1)model Ⅱ have higher accuracy.

Key words: GM(1,1)model, simplify, precision, particle swarm algorithm

中图分类号: 

  • N941.5
[1] 邓聚龙.多维灰色预测与决策[M].武汉:华中工学院出版社,1986:128-130. DENG Julong. Multi grey system prediction and decision[M]. Wuhan: Huazhong University of Science and Technology Press, 1986: 128-130.
[2] 周飞,吕一清,石琳娜. 改进粒子群算法优化灰色神经网络预测模型及其应用[J]. 统计与决策,2017(11):66-70. ZHOU Fei, LYU Yiqing, SHI Lingna. Gray neural network forecasting model and its application based on improved particle swarm algorithm optimization[J]. Statistics & Decision, 2017(11):66-70.
[3] 薛颖,沙秀艳. 基于改进模糊聚类算法的灰色预测模型[J]. 统计与决策,2017(9):27-30. XUE Ying, SHA Xiuyan. On gray prediction model based on an improved FCM algorithm[J]. Statistics & Decision, 2017(9):27-30.
[4] 杨国华,颜艳,杨慧中. GM(1,1)灰色预测模型的改进与应用[J]. 南京理工大学学报,2020,44(5):575-582. YANG Guohua, YAN Yan, YANG Huizhong. Application of improved GM(1,1)grey prediction model[J]. Journal of Nanjing University of Science and Technology, 2020, 44(5):575-582.
[5] 张岐山.提高灰色GM(1,1)模型精度的微粒群方法[J].中国管理科学,2007,15(5):126-129. ZHANG Qishan. Improving the precision of GM(1,1)model by using particle swarm optimization[J]. Chinese Journal of Management Science, 2007, 15(5):126-129.
[6] 姚天祥,刘思峰.改进的离散灰色预测模型[J].系统工程,2007,25(9):103-106. YAO Tianxiang, LIU Sifeng. Improvement of a forecasting discrete GM(1,1)[J]. Systems Engineering, 2007, 25(9):103-106.
[7] 康宁,荆科. 基于最小一乘的灰色预测系列模型[J]. 系统工程,2016,34(8):149-153. KANG Ning, JING Ke. Grey prediction models based on least absolution deviation criteria[J]. Systems Engineering, 2016, 34(8):149-153.
[8] 林燕,王伟,徐遵义. 灰色模型的改进及其在电厂实时测量数据预处理中的应用[J]. 计算机应用,2016,36(S2):103-107. LIN Yan, WANG Wei, XU Zunyi. Improvement of grey model and application to preprocessing of real-time measurement data in power plants[J]. Journal of Computer Applications, 2016, 36(S2):103-107.
[9] 翁志坚,邱晨杰,邱福祥,等. 基于马尔科夫优化的灰色GM(1,1)沉降预测模型及应用[J]. 科学技术与工程,2020,20(29):12065-12070. WENG Zhijian, QIU Chenjie, QIU Fuxiang, et al. An optimized GM(1,1)grey prediction model based on Markov chain and its application[J]. Science Technology and Engineering, 2020, 20(29):12065-12070.
[10] 刘兵兵. 一类灰色二层线性多目标规划问题及其算法[J]. 山东大学学报(理学版),2012,47(5):122-126. LIU Bingbig. A grey bilevel linear multi-objective programming problem and its algorithm[J]. Journal of Shandong University(Natural Science), 2012, 47(5):122-126.
[11] 吕康娟,胡颖. 灰色量子粒子群优化通用向量机的中国行业间碳排放转移网络预测研究[J]. 中国管理科学,2020,28(8):196-208. LYU Kangjuan, HU Ying. Prediction of inter-industry carbon emissions transfer network in China based on grey quantum particle swarm optimizing general vector machine[J]. Chinese Journal of Management Science, 2020, 28(8):196-208.
[12] 孙爱民. 基于新陈代谢灰色预测模型的西安市电力需求量的预测[J]. 数学的实践与认识,2019,49(23):298-305. SUN Aimin. Prediction of electric power demand in Xian based on metabolic grey forecasting model [J]. Mathematics in Practice and Theory, 2019, 49(23):298-305.
[13] 高普梅,湛军. 基于扰动信息的连续区间灰数灰色预测模型[J]. 系统工程与电子技术,2019,41(11):2533-2540. GAO Pumei, ZHAN Jun. Grey prediction model of continuous interval grey number based on perturbation information[J]. Systems Engineering and Electronics, 2019, 41(11):2533-2540.
[14] 杨孝良,周猛,曾波. 灰色预测模型背景值构造的新方法[J]. 统计与决策,2018,34(19):14-18. YANG Xiaoliang, ZHOU Meng, ZENG Bo. A new method for constructing background value of grey prediction model[J]. Statistics & Decision, 2018, 34(19):14-18.
[15] 王志祥. 淮安市PM2.5的分布特征与灰色预测模型[J]. 数学的实践与认识,2018,48(5):286-291. WANG Zhixiang. The distribution characteristics and gray prediction model of PM2.5 in Huaian[J]. Mathematics in Practice and Theory, 2018, 48(5):286-291.
[16] EBERHART R C, KENNEDY J. A new optimizer using particles swarm theory[C] //Proceedings of Sixth International Symposium on Micro Machine and Human Science. Nagoya: IEEE, 1995: 39-43.
[17] SHI Y H, EBERHART R C. A modified particle swarm optimizer[C] //IEEE International Conference on Evolutionary Computation. Anchorage: IEEE, 1998: 69-73.
[1] 刘静姝,王莉,刘惊雷. 基于循环矩阵投影的Nyström扩展[J]. 《山东大学学报(理学版)》, 2020, 55(7): 55-66.
[2] 郝秀梅,刘纪芹. 外P-模糊集的截集与扩展粗集模型[J]. 《山东大学学报(理学版)》, 2020, 55(10): 1-6.
[3] 王文卿,撖奥洋,于立涛,张智晟. 自编码器与PSOA-CNN结合的短期负荷预测模型[J]. 《山东大学学报(理学版)》, 2019, 54(7): 50-56.
[4] 马兰,李伟岸,尹天懿. 基于变邻域搜索改进的冲突解脱粒子群算法[J]. 山东大学学报(理学版), 2017, 52(1): 23-28.
[5] 李琳, 张焕水. 离散时间多输入时滞系统的镇定性问题[J]. 山东大学学报(理学版), 2015, 50(11): 91-97.
[6] 万智萍1,吕志民1,2*. 一种自适应物种寻优的无线Mesh网络QoS路由算法[J]. J4, 2013, 48(09): 10-16.
[7] 马云艳,栾贻会*. 基于局部LRS方法的稀疏信号片段检测[J]. J4, 2012, 47(12): 1-5.
[8] 裴海峰. ε-函数粗集及其在投资组合中的应用[J]. J4, 2012, 47(11): 88-93.
[9] 牛裕琪1,王芬玲1,石东伟2. 非线性黏弹性方程双线性元解的高精度分析[J]. J4, 2011, 46(8): 31-37.
[10] 李之毅, 刘纪芹*. 6双向S-概率粗糙集及其应用[J]. J4, 2011, 46(12): 114-119.
[11] 余承依,李进金*. 变精度粗糙集β下近似属性约简[J]. J4, 2011, 46(11): 17-21.
[12] 易超群,李建平,朱成文. 一种基于分类精度的特征选择支持向量机[J]. J4, 2010, 45(7): 119-121.
[13] 郭文鹃,杨公平*,董晋利. 指纹图像分割方法综述[J]. J4, 2010, 45(7): 94-101.
[14] 巩本学,李莎莎. Uq(Sp(2n))-模同构R=Θ。~f。 P中Θ的简化[J]. J4, 2010, 45(6): 35-38.
[15] 李彬1,2,李贻斌1,荣学文1. ELM-RBF神经网络的智能优化策略[J]. J4, 2010, 45(5): 48-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!