《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (4): 40-48.doi: 10.6040/j.issn.1671-9352.0.2022.280
• • 上一篇
杜芳芳,孙同军*
DU Fang-fang, SUN Tong-jun*
摘要: 对一类四阶非线性抛物方程最优控制问题提出一种三次B样条有限元方法。状态变量和对偶状态变量用具有更好光滑性的分片三次B样条连续函数进行逼近,控制变量由分片常数函数进行逼近。这样得到的状态变量和对偶状态变量的数值解二阶连续可微。建立最优性系统的全离散格式,并用迭代法进行求解。最后建立数值算例,验证方法的有效性。
中图分类号:
[1] LIONS J L. Optimal control of systems governed by partial differential equations[M]. Berlin: Springer-Verlag, 1971. [2] HINZE M, PINNAU R, ULBRICH M, et al. Optimization with PDE constraints[M]. Dordrecht, Netherlands: Springer, 2009. [3] LIU Wenbin, YAN Ningning. Adaptive finite element methods for optimal control governed by PDEs[M]. Beijing: Science Press, 2008. [4] FU Hongfei, RUI Hongxing. A priori error estimates for optimal control problems governed by transient advection-diffusion equations[J]. Journal of Scientific Computing, 2009, 38(3):290-315. [5] LU Zuliang. Adaptive fully-discrete finite element methods for nonlinear quadratic parabolic boundary optimal control[J/OL]. Boundary Value Problems, 2013[2022-08-06]. https://boundaryvalueproblems.springeropen.com/articles/10.1186/1687-2770-2013-72. [6] CHANG Yanzhen, YANG Danping. Finite element approximation for a class of parameter estimation problems[J]. Journal of Systems Science and Complexity, 2014, 27(5):866-882. [7] HOU Chunjuan, LU Zuliang, CHEN Xuejiao, et al. Error estimates of variational discretization for semilinear parabolic optimal control problems[J]. AIMS Mathematics, 2021, 6(1):772-793. [8] DOMINIK M, BORIS V. A priori error estimates for space-time finite element discretization of parabolic optimal control problems(part Ⅰ): problems without control constraints[J]. SIAM Journal on Control and Optimization, 2008, 47(3):1150-1177. [9] DOMINIK M, BORIS V. A priori error estimates for space-time finite element discretization of parabolic optimal control problems(part Ⅱ): problems with control constraints[J]. SIAM Journal on Control and Optimization, 2008, 47(3):1301-1329. [10] ZHAO Xiaopeng, CAO Jinde. Optimal control problem for the BCF model describing crystal surface growth[J]. Nonlinear Analysis: Modelling and Control, 2016, 21(2):223-240. [11] BURTON W K, CABRERA N, FRANK F C. The growth of crystals and the equilibrium structure of their surfaces[J]. Mathematical and Physical Sciences, 1951, 243(866):299-358. [12] JOHNSON M D, ORME C, HUNT A W, et al. Stable and unstable growth in molecular beam epitaxy[J]. Phys Rev Lett, 1994, 72(1):116-119. [13] HAMID N N A, MAJID A A, ISMAIL A I M. Bicubic B-spline interpolation method for two-dimensional heat equation[J]. AIP Conference Proceedings, 2015, 1682(1):020031. [14] GARDNER L R T, GARDNER G A. A two dimensional bicubic B-spline finite element: used in a study of MHD-duct flow[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 124(4):365-375. [15] MOHANTY R K, JAIN M K, DHALL D. High accuracy cubic spline approximation for two dimensional quasi-linear elliptic boundary value problems[J]. Applied Mathematical Modelling, 2013, 37(1):155-171. [16] BAI Dongmei, ZHANG Luming. The quadratic B-spline finite element method for the coupled Schrödinger-Boussinesq equations[J]. International Journal of Computer Mathematics, 2011, 88(8):1714-1729. [17] WENDEL S, MAISCH H, KARL H, et al. Two dimensional B-spline finite elements and their application to the computation of solitons[J]. Archiv für Elektrotechnik, 1993, 76(6):427-435. [18] QIN Dandan, TAN Jiawei, LIU Bo, et al. A B-spline finite element method for solving a class of nonlinear parabolic equations modeling epitaxial thin-film growth with variable coefficient[J/OL]. Advances in Difference Equations, 2020[2022-08-06]. https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02629-6. [19] QIN Dandan, DU Yanwei, LIU Bo, et al. A B-spline finite element method for nonlinear differential equations describing crystal surface growth with variable coefficient[J/OL]. Advances in Difference Equations, 2019[2022-08-06]. https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2032-5. [20] ZHAO Xiaopeng, LIU Fengnan, LIU Bo. Finite element method for a nonlinear differential equation describing crystal surface growth[J]. Mathematical Modelling and Analysis, 2014, 19(2):155-168. [21] ADAMS R. Sobolev spaces[M]. New York: Academic Press, 1975. |
[1] | 段对花,高承华,王晶晶. 一类k-Hessian方程爆破解的存在性和不存在性[J]. 《山东大学学报(理学版)》, 2022, 57(3): 62-67. |
[2] | 王燕荣,陈云兰. 一种改进的求解大型线性方程组的Jacobi迭代法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 122-126. |
[3] | 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121. |
[4] | 郑瑞瑞,孙同军. 一类捕食与被捕食模型最优控制问题的有限元方法的先验误差估计[J]. 《山东大学学报(理学版)》, 2020, 55(1): 23-32. |
[5] | 杨朝强. 一类混合跳-扩散分数布朗运动的欧式回望期权定价[J]. J4, 2013, 48(6): 67-74. |
[6] | 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65-71. |
[7] | 刘晓光,畅大为*. 亏秩线性方程组PSD迭代法的最优参数[J]. J4, 2011, 46(12): 13-18. |
[8] | 陆峰. 解大型线性方程组的轮换重新开始Krylov子空间方法[J]. J4, 2010, 45(9): 65-69. |
[9] | 张守慧,王文洽 . 热传导方程有限差分逼近的数学Stencil及其新型迭代格式[J]. J4, 2006, 41(6): 24-31 . |
[10] | 陈莉, . 非方离散广义系统的奇异LQ问题及最优代价单调性[J]. J4, 2006, 41(5): 80-83 . |
|