您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (11): 53-60.doi: 10.6040/j.issn.1671-9352.0.2022.322

•   • 上一篇    下一篇

基于变量替换控制的分数阶复杂网络拓扑识别

马维元1(),李志明2,代常平1   

  1. 1. 西北民族大学数学与计算机科学学院, 甘肃 兰州 730030
    2. 贵州航天天马机电科技有限公司,贵州 遵义 563000
  • 收稿日期:2022-05-30 出版日期:2023-11-20 发布日期:2023-11-07
  • 作者简介:马维元(1980—),男,副教授,博士,硕士生导师,研究方向为分数阶复杂网络及同步. E-mail: mwy2004@126.com
  • 基金资助:
    国家自然科学基金资助项目(61966032);甘肃省自然科学基金资助项目(22JR5RA184);中央高校基本科研业务费项目(31920220041)

Topology identification of fractional complex networks based on variable substitution control method

Weiyuan MA1(),Zhiming LI2,Changping DAI1   

  1. 1. School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, Gansu, China
    2. Guizhou Aerospace Tianma Electromechanical Technology Co., Ltd., Zunyi 563000, Guizhou, China
  • Received:2022-05-30 Online:2023-11-20 Published:2023-11-07

摘要:

研究了基于可变替换控制法的分数阶复杂动力学网络的同步及拓扑辨识问题,构造了具有可变替换控制的响应网络和参数更新律,利用分数阶微分系统稳定性理论,推导了实现拓扑识别和同步的准则。最后通过数值仿真验证了所提方法的有效性和可行性。

关键词: 变量替换控制, 拓扑识别, 同步, 复杂网络

Abstract:

In this paper, synchronization and topology identification of fractional-order complex dynamical networks based on the variable substitution control method are studied. The considered network constructs a response network and parameter update law with variable substitution control. Based on the stability theory of fractional differential systems, the criteria for realizing topology identification and synchronization are deduced. Finally, the effectiveness and feasibility of the proposed method are verified by numerical simulation.

Key words: variable substitution control, topology identification, synchronization, complex network

中图分类号: 

  • N941.4

图1

例1中未知拓扑结构随时间的演化效果"

图2

例1中的同步误差"

图3

例1中的不同分数阶阶数下的总体平均误差"

图4

例2中未知拓扑结构的识别效果"

图5

例2中的同步误差"

图6

例2中的不同分数阶阶数下的总体平均误差"

1 LIU Guoping , KADIRKAMANATHAN V , BILLINGS S A . Variable neural networks for adaptive control of nonlinear systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part C, 1999, 29 (1): 34- 43.
doi: 10.1109/5326.740668
2 MA Weiyuan , LI Zhiming , MA Nuri . Synchronization of discrete fractional-order complex networks with and without unknown topology[J]. Chaos, 2022, 32, 013112.
doi: 10.1063/5.0072207
3 GUI Zhifang , WU Xiaofeng , CHEN Yun . Global synchronization of multi-scroll saturated chaotic systems via single-state linear feedback control[J]. International Journal of Modern Physics B, 2013, 27 (5): 1350007.
doi: 10.1142/S0217979213500070
4 SUN Jitao , ZHANG Yinping . Impulsive control of n-scroll grid attractors[J]. International Journal of Bifurcation and Chaos, 2004, 14 (9): 3295- 3301.
doi: 10.1142/S0218127404011326
5 WU Yongbao , ZHU Jilin , LI Wenxue . Intermittent discrete observation control for synchronization of stochastic neural networks[J]. IEEE Transactions on Cybernetics, 2019, 50 (6): 2414- 2424.
6 SU Haipeng , LUO Runzi , HUANG Meichun , et al. Practical fixed time active control scheme for synchronization of a class of chaotic neural systems with external disturbances[J]. Chaos, Solitons & Fractals, 2022, 157, 111917.
7 王震, 吴云天, 邹永杰. 多涡卷Jerk电路混沌系统的分析与滑模控制[J]. 西安科技大学学报, 2009, 29 (6): 765- 768.
doi: 10.3969/j.issn.1672-9315.2009.06.024
WANG Zhen , WU Yuntian , ZOU Yongjie . Analysis and sliding mode control of multi-scroll Jerk circuit chaotic system[J]. Journal of Xi'an University of Science and Technology, 2009, 29 (6): 765- 768.
doi: 10.3969/j.issn.1672-9315.2009.06.024
8 PECORA L M , CARROLL T L . Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64 (8): 821- 824.
doi: 10.1103/PhysRevLett.64.821
9 SI Gangquan , SUN Zhiyong , ZHANG Hongying , et al. Parameter estimation and topology identification of uncertain fractional order complex networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17 (12): 5158- 5171.
doi: 10.1016/j.cnsns.2012.05.005
10 CHEN Yun , WU Xiaofeng , LIU Zhong . Global chaos synchronization of electro-mechanical gyrostat systems via variable substitution control[J]. Chaos Soliton Fractals, 2009, 42 (2): 1197- 1205.
doi: 10.1016/j.chaos.2009.03.014
11 ZHONG G Q , TANG WALLACE K S . Circuitry implementation and synchronization of Chen's attractor[J]. International Journal of Bifurcation and Chaos, 2002, 12 (6): 1423- 1427.
doi: 10.1142/S0218127402005224
12 LIU Zhong, CHEN Yun, WU Xiaofeng. Global chaos synchronization of the brushless DC motor systems via variable substitution control[C]// Proceedings of 2009 International Workshop on Chaos-Fractals Theories and Applications. Shenyang: IEEE, 2009: 44-47.
13 CHEN Yun , WU Xiaofeng . Global chaos synchronization of nonautonomous systems via variable substitution control[J]. International Journal of Bifurcation and Chaos, 2008, 18 (12): 3719- 3730.
doi: 10.1142/S0218127408022676
14 LU Junan , WU Xiaoqun , LV Jinhu . Synchronization of a unified chaotic system and the application in secure communication[J]. Physical Review A, 2002, 305 (6): 365- 370.
15 AGIZA H N . Chaos synchronization of Lü dynamical system[J]. Nonlinear Analysis, 2004, 58 (1/2): 11- 20.
16 WU Xiaofeng , ZHAO Yi , HUANG Xiaohua . Some new criteria for lag synchronization of chaotic Lur'e systems by replacing variables control[J]. Journal of Control Theory and Applications, 2004, 2 (3): 259- 266.
doi: 10.1007/s11768-004-0007-9
17 ELABBASY E M , AGIZA H N , ELDESSOKY M M . Synchronization of modified Chen system[J]. International Journal of Bifurcation and Chaos, 2004, 14 (11): 3969- 3979.
doi: 10.1142/S0218127404011740
18 WU Xiaoqun , LI Yanan , WEI Juan , et al. Inter-layer synchronization in two-layer networks via variable substitution control[J]. Journal of the Franklin Institute, 2020, 357 (4): 2371- 2387.
doi: 10.1016/j.jfranklin.2019.12.019
19 LI Changping , DENG Weihua . Remarks on fractional derivatives[J]. Applied Mathematics and Computation, 2007, 187 (2): 777- 784.
doi: 10.1016/j.amc.2006.08.163
20 LI Zhiming , MA Weiyuan , MA Nuri . Partial topology identification of tempered fractional-order complex networks via synchronization method[J]. Mathematical Methods in the Applied Sciences, 2023, 46 (3): 3066- 3079.
doi: 10.1002/mma.7549
21 LI Yan , CHEN Yangquan , PODLUBNY I . MittagLeffler stability of fractional order nonlinear dynamic systems[J]. Automatica, 2009, 45 (8): 1965- 1969.
doi: 10.1016/j.automatica.2009.04.003
22 AGUILA-CAMACHO N , DUARTE-MERMOUD M A , GALLEGO J A . Lyapunov functions for fractional order systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19 (9): 2951- 2957.
[1] 孙诗文,牟丹阳. 基于Z2pm上二阶广义割圆的量子可同步码[J]. 《山东大学学报(理学版)》, 2023, 58(12): 161-166.
[2] 王涛,闫统江,孙玉花,刘骞. 基于Reed-Solomon码的量子可同步码[J]. 《山东大学学报(理学版)》, 2022, 57(3): 58-61.
[3] 王静红,梁丽娜,李昊康,王熙照. 基于标记注意力机制的社区发现算法[J]. 《山东大学学报(理学版)》, 2022, 57(12): 1-12.
[4] 王静红,梁丽娜,李昊康,周易. 基于注意力网络特征的社区发现算法[J]. 《山东大学学报(理学版)》, 2021, 56(9): 1-12,20.
[5] 祁慧敏,张莉,安新磊,乔帅,肖冉. 电磁感应下一类新皮层神经元的放电及同步[J]. 《山东大学学报(理学版)》, 2021, 56(5): 1-11.
[6] 张一鸣,王国胤,胡军,傅顺. 基于密度峰值和网络嵌入的重叠社区发现[J]. 《山东大学学报(理学版)》, 2021, 56(1): 91-102.
[7] 高月月,李新颖,李宁. 电磁感应下Chay神经元的放电分岔特性与同步[J]. 《山东大学学报(理学版)》, 2021, 56(1): 43-51.
[8] 王红梅,安新磊,乔帅,张薇. e-HR神经元模型分岔分析与同步控制[J]. 《山东大学学报(理学版)》, 2020, 55(9): 10-18.
[9] 代新敏,谢晓尧. 一种抗去同步的轻量级RFID双向认证协议[J]. 《山东大学学报(理学版)》, 2019, 54(5): 52-76.
[10] 魏思敏,张宪华,张祯,孟庆春,张夏然. 基于复杂网络的虚拟品牌社区意见领袖识别研究——以魅族Flyme社区为例[J]. 《山东大学学报(理学版)》, 2018, 53(11): 26-34.
[11] 王鑫,左万利,朱枫彤,王英. 基于重要结点的社区发现算法[J]. 山东大学学报 (理学版), 2018, 53(11): 67-77.
[12] 王亚奇,王静. 考虑好奇心理机制的动态复杂网络谣言传播研究[J]. 山东大学学报(理学版), 2017, 52(6): 99-104.
[13] 许忠好,李天奇. 基于复杂网络的中国股票市场统计特征分析[J]. 山东大学学报(理学版), 2017, 52(5): 41-48.
[14] 杨叶红,肖剑*,马珍珍. 一个新分数阶混沌系统的同步和控制[J]. 山东大学学报(理学版), 2014, 49(2): 76-83.
[15] 孙松涛, 何炎祥, 蔡瑞, 李飞, 贺飞艳. 面向微博情感评测任务的多方法对比研究[J]. 山东大学学报(理学版), 2014, 49(11): 43-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[2] 陈亚娟1,2,尚新春1*. 受热黏弹性球体中空穴的动态生成和增长[J]. J4, 2013, 48(4): 72 -76 .
[3] 许秋燕 . 解二维扩散方程的一类有限差分并行算法[J]. J4, 2008, 43(8): 1 -05 .
[4] 邱桃荣,王璐,熊树洁,白小明. 一种基于粒计算的知识隐藏方法[J]. J4, 2010, 45(7): 60 -64 .
[5] 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65 -71 .
[6] 王顺康,王林山 . 具有马尔可夫跳跃参数的变时滞静态神经网络的全局指数稳定性[J]. J4, 2008, 43(4): 81 -84 .
[7] 高云澍,颜谨 . 无爪图中具有指定长度的路因子[J]. J4, 2006, 41(5): 51 -54 .
[8] 屈 文,苏继新*,潘 齐,聂玉伦 . 磺酸基键合硅胶的制备及其酸催化性能研究[J]. J4, 2007, 42(11): 11 -14 .
[9] 王 震,蒋鹏飞 . 古诺寡头市场分销商线性激励机制[J]. J4, 2008, 43(9): 85 -88 .
[10] 关瑞芳,张志国,朱晓丽,冯圣玉,孔祥正* . 环糊精与SEM-25多聚准轮烷的制备及表征[J]. J4, 2008, 43(3): 21 -25 .