《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (3): 14-26.doi: 10.6040/j.issn.1671-9352.7.2023.9950
Zhonghui LIU1(),Shuai JIANG1,Fan MIN1,2,*()
摘要:
针对模糊形式概念分析在推荐应用中难以用于大规模数据集的问题,提出了一种基于模糊概念集启发式构造的推荐方法。根据用户之间的相似度,为每个用户构建子背景,在子背景上采用新的启发式信息,分别以用户和项目为线索生成模糊概念。利用模糊概念内部信息,设计了融入用户权重的推荐置信度,实现了对用户的个性化推荐。在6个真实数据集上进行试验,本方法的推荐效率较高,与经典的协同过滤算法相比,在稀疏的数据集上能够取得更好的推荐效果。
中图分类号:
1 | WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[C]//Formal Concept Analysis: 7th International Conference. Berlin: Springer, 2009: 314-339. |
2 | KUZNETSOV S O. Machine learning and formal concept analysis[C]//Concept Lattices: Second International Conference on Formal Concept Analysis. Berlin: Springer, 2004: 287-312. |
3 |
KANG Xiangping , LI Deyu , WANG Suge . A multi-instance ensemble learning model based on concept lattice[J]. Knowledge-Based Systems, 2011, 24 (8): 1203- 1213.
doi: 10.1016/j.knosys.2011.05.010 |
4 |
KUMAR C A . Fuzzy clustering-based formal concept analysis for association rules mining[J]. Applied Artificial Intelligence, 2012, 26 (3): 274- 301.
doi: 10.1080/08839514.2012.648457 |
5 | TALLAM S , GUPTA N . A concept analysis inspired greedy algorithm for test suite minimization[J]. ACM SIGSOFT Software Engineering Notes, 2005, 31 (1): 35- 42. |
6 | ZOU Caifeng , ZHANG Daqiang , WAN Jiafu , et al. Using concept lattice for personalized recommendation system design[J]. IEEE Systems Journal, 2015, 11 (1): 305- 314. |
7 |
陈昊文, 王黎明, 张卓. 基于概念邻域的Top-N推荐算法[J]. 小型微型计算机系统, 2017, 38 (11): 2553- 2559.
doi: 10.3969/j.issn.1000-1220.2017.11.025 |
CHEN Haowen , WANG Liming , ZHANG Zhuo . Top-N recommendation algorithm based on conceptual neighborhood[J]. Journal of Chinese Computer Systems, 2017, 38 (11): 2553- 2559.
doi: 10.3969/j.issn.1000-1220.2017.11.025 |
|
8 |
ZADEH L A . Fuzzy sets[J]. Information and Control, 1965, 8 (3): 338- 353.
doi: 10.1016/S0019-9958(65)90241-X |
9 | QUAN T T, HUI S C, CAO T H. A fuzzy FCA-based approach for citation-based document retrieval[C]//IEEE Conference on Cybernetics and Intelligent Systems, 2004. Piscataway: IEEE, 2004, 1: 578-583. |
10 | BURUSCO J A , FUENTES-GONZÁLEZ R . The study of the L-fuzzy concept lattice[J]. Mathware and Soft Computing, 1994, 1 (3): 209- 218. |
11 |
刘宗田, 强宇, 周文, 等. 一种模糊概念格模型及其渐进式构造算法[J]. 计算机学报, 2007, 30 (2): 184- 188.
doi: 10.3321/j.issn:0254-4164.2007.02.004 |
LIU Zongtian , QIANG Yu , ZHOU Wen , et al. Fuzzy concept lattice model and its incremental construction algorithm[J]. Chinese Journal of Computers, 2007, 30 (2): 184- 188.
doi: 10.3321/j.issn:0254-4164.2007.02.004 |
|
12 | KRAJCI S . Cluster based efficient generation of fuzzy concepts[J]. Neural Network World, 2003, 13 (5): 521- 530. |
13 | YAHIA S B , AROUR K , SLIMANI A , et al. Discovery of compact rules in relational databases[J]. Information Science Journal, 2000, 4 (3): 497- 511. |
14 |
ZHANG Wenxiu , MA Jianmin , FAN Shiqing . Variable threshold concept lattices[J]. Information Sciences, 2007, 177 (22): 4883- 4892.
doi: 10.1016/j.ins.2007.05.031 |
15 | BOFFA S, DE MAIO C, DI NOLA A, et al. Unifying fuzzy concept lattice construction methods[C]//2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Piscataway: IEEE, 2016: 209-216. |
16 |
SHAO Mingwen , LEUNG Y , WANG Xizhao , et al. Granular reducts of formal fuzzy contexts[J]. Knowledge-Based Systems, 2016, 114, 156- 166.
doi: 10.1016/j.knosys.2016.10.010 |
17 | MI Yunlong , SHI Yong , LI Jinhai , et al. Fuzzy-based concept learning method: exploiting data with fuzzy conceptual clustering[J]. IEEE Transactions on Cybernetics, 2020, 52 (1): 582- 593. |
18 | XU Weihua , GUO Doudou , QIAN Yuhua , et al. Two-way concept-cognitive learning method: a fuzzy-based progressive learning[J]. IEEE Transactions on Fuzzy Systems, 2022, 31 (6): 1- 15. |
19 |
SINGH P K , KUMAR C A , LI Jinhai . Knowledge representation using interval-valued fuzzy formal concept lattice[J]. Soft Computing, 2016, 20, 1485- 1502.
doi: 10.1007/s00500-015-1600-1 |
20 | FANG Peici, ZHENG Siyao. A research on fuzzy formal concept analysis based collaborative filtering recommendation system[C]//2009 Second International Symposium on Knowledge Acquisition and Modeling. Piscataway: IEEE, 2009: 352-355. |
21 | 张喜征, 蔡月月, 罗文. 基于模糊概念格的领先用户个性化知识推荐研究[J]. 科技管理研究, 2019, 39 (7): 183- 189. |
ZHANG Xizheng , CAI Yueyue , LUO Wen . Research on personalized knowledge recommendation for leading users based on fuzzy concept lattice in innovation community[J]. Science and Technology Management Research, 2019, 39 (7): 183- 189. | |
22 |
LIU Zhonghui , ZHAO Qi , ZOU Lu , et al. A heuristic concept construction approach to collaborative recommendation[J]. International Journal of Approximate Reasoning, 2022, 146, 119- 132.
doi: 10.1016/j.ijar.2022.04.004 |
23 | GANTER B , WILLE R . Formal concept analysis: mathematical foundations[M]. Berlin: Springer, 1999. |
24 | ZADEH L A . Fuzzy sets and information granularity[M]. Amsterdam: World Scientific Publisher, 1979. |
25 | 李金海, 魏玲, 张卓, 等. 概念格理论与方法及其研究展望[J]. 模式识别与人工智能, 2020, 33 (7): 619- 642. |
LI Jinhai , WEI Ling , ZHANG Zhuo , et al. Concept lattice theory and method and their research prospect[J]. Pattern Recognition and Artificial Intelligence, 2020, 33 (7): 619- 642. | |
26 |
POELMANS J , IGNATOV D I , KUZNETSOV S O , et al. Fuzzy and rough formal concept analysis: a survey[J]. International Journal of General Systems, 2014, 43 (2): 105- 134.
doi: 10.1080/03081079.2013.862377 |
27 | 于蒙, 何文涛, 周绪川, 等. 推荐系统综述[J]. 计算机应用, 2022, 42 (6): 1898- 1913. |
YU Meng , HE Wentao , ZHOU Xuchuan , et al. Review of recommendation system[J]. Journal of Computer Applications, 2022, 42 (6): 1898- 1913. | |
28 |
BOUCHER-RYAN P D , BRIDGE D . Collaborative recommending using formal concept analysis[J]. Knowledge-Based Systems, 2006, 19 (5): 309- 315.
doi: 10.1016/j.knosys.2005.11.017 |
29 | 朵琳, 杨丙. 一种基于用户兴趣概念格的推荐评分预测方法[J]. 小型微型计算机系统, 2020, 41 (10): 2104- 2108. |
DUO Lin , YANG Bing . Recommendation rating prediction based on user interest concept lattice[J]. Journal of Chinese Computer Systems, 2020, 41 (10): 2104- 2108. | |
30 | MEZNI H , ABDELJAOUED T . A cloud services recommendation system based on fuzzy formal concept analysis[J]. Data & Knowledge Engineering, 2018, 116, 100- 123. |
31 | KUMAR C A , SINGH P K . Knowledge representation using formal concept analysis: a study on concept generation[M]. Hershey: IGI Global, 2014: 306- 336. |
32 | HARPER F M , KONSTAN J A . The movielens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5 (4): 1- 19. |
33 | PHUONG N D, PHUONG T M. Collaborative filtering by multi-task learning[C]//2008 IEEE International Conference on Research, Innovation and Vision for the Future in Computing and Communication Technologies. Piscataway: IEEE, 2008: 227-232. |
34 | GUO Guibing, ZHANG Jie, YORKE-SMITH N. A novel Bayesian similarity measure for recommender systems[C]//Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2013: 2619-2625. |
35 | GOLDBERG K , ROEDER T , GUPTA D , et al. Eigentaste: a constant time collaborative filtering algorithm[J]. Information Retrieval, 2001, 4, 133- 151. |
36 | IGNATOV D I, NENOVA E, KONSTANTINOVA N, et al. Boolean matrix factorisation for collaborative filtering: an FCA-based approach[C]//International Conference on Artificial Intelligence: Methodology, Systems, and Applications. Cham: Springer, 2014: 47-58. |
37 | HE Xiangnan, LIAO Lizi, ZHANG Hanwang, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. |
[1] | 陈曜琦,徐伟华,蒋宗颖. 三支概念的恢复集[J]. 《山东大学学报(理学版)》, 2023, 58(12): 52-62. |
[2] | 韩培磊,魏玲,王振,赵思雨. FCA中的互补概念及其性质与生成[J]. 《山东大学学报(理学版)》, 2022, 57(8): 60-67. |
[3] | 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82. |
[4] | 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12. |
[5] | 刘营营,米据生,梁美社,李磊军. 三支区间集概念格[J]. 《山东大学学报(理学版)》, 2020, 55(3): 70-80. |
[6] | 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12. |
[7] | 黄淑芹,徐勇,王平水. 基于概率矩阵分解的用户相似度计算方法及推荐应用[J]. 山东大学学报(理学版), 2017, 52(11): 37-43. |
[8] | 汤亚强, 范敏, 李金海. 三元形式概念分析下的认知系统模型及信息粒转化方法[J]. 山东大学学报(理学版), 2014, 49(08): 102-106. |
[9] | 戚丽丽,孙静宇*,陈俊杰. 基于均模型的IBCF算法研究[J]. J4, 2013, 48(11): 105-110. |
[10] | 孙静宇,陈俊杰*,余雪丽,何秀. 基于CBR的协同Web搜索模型及应用研究[J]. J4, 2012, 47(5): 19-24. |
|