您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (8): 60-67.doi: 10.6040/j.issn.1671-9352.0.2022.055

• • 上一篇    下一篇

FCA中的互补概念及其性质与生成

韩培磊1,2,魏玲1,2*,王振1,2,赵思雨1,2,3   

  1. 1.西北大学数学学院, 陕西 西安 710127;2.西北大学概念、认知与智能研究中心, 陕西 西安 710127;3.咸阳师范学院数学与统计学院, 陕西 咸阳 712000
  • 出版日期:2022-08-20 发布日期:2022-06-29
  • 作者简介:韩培磊(1996— ),女,硕士研究生,研究方向为形式概念分析、粗糙集、粒计算等. E-mail:1827619808@qq.com*通信作者简介:魏玲(1972— ),女,博士,教授,博士生导师,研究方向为形式概念分析、三支决策理论、粒计算等. E-mail:wl@nwu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12171392,62006190);陕西省自然科学基础研究计划资助项目(2021JM-141)

Complementary concepts and their properties and generation in FCA

HAN Pei-lei1,2, WEI Ling1,2*, WANG Zhen1,2, ZHAO Si-yu1,2,3   

  1. 1. School of Mathematics, Northwest University, Xian 710127, Shaanxi, China;
    2. Institute of Concepts, Cognition and Intelligence, Northwest University, Xian 710127, Shaanxi, China;
    3. School of Mathematics and Statistics, Xianyang Normal University, Xianyang 712000, Shaanxi, China
  • Online:2022-08-20 Published:2022-06-29

摘要: 在形式概念分析中,概念格上的偏序关系刻画了概念间的泛化和特化关系,而概念格中不可比概念之间也存在着值得研究的特定语义信息。受此启发,提出互补概念这一定义并给出其形式化描述。首先,通过给定两个对象子集关于某个特定属性子集互补程度的描述,根据不同实际需求分别定义强、弱互补关系。在此基础上,研究互补概念及相关性质,并在不同语义背景下探究最优强互补概念和最优弱互补概念,给出相应生成算法。最后,通过实例说明所研究内容的合理性与可适用性。

关键词: 概念格, 形式概念分析, 强互补概念, 弱互补概念

Abstract: In formal concept analysis, partial order relation of concept lattice describes generalization and specialization between concepts. There also exists some specific semantic information that is worth studying between incomparable concepts. Inspired by this, complementary concepts are studied in this paper. Firstly, the complementary degree of two object subsets is described by considering a specific attribute subset in formal context, based on which the strong and weak complementary relations are defined according to different actual needs. Further, the complementary concepts and their related properties are studied, and the optimal strong complementary concept and optimal weak complementary concept are explored under different semantics, and the corresponding algorithms are also given. Finally, examples are presented given to illustrate the rationality and applicability of the content of this paper.

Key words: concept lattice, formal concept analysis, strong complementary concept, weak complementary concept

中图分类号: 

  • TP18
[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[M] //RIVAL I. Ordered Sets. Dordrecht, Netherland: Springer, 1982: 445-470.
[2] GANTER B, WILLE R. Formal concept analysis: mathematical foundations[M]. New York: Springer-Verlag, 1999.
[3] KUZNETSOV S O, OBIEDKOV S A. Comparing performance of algorithms for generating concept lattices[J]. Journal of Experimental and Theoretical Artificial Intelligence, 2002, 14(2/3):189-216.
[4] 曾利程, 张祖平, 邹力耕. 增量式快速构建概念格算法[J]. 计算机科学与探索, 2018, 12(11):1862-1870. ZENG Licheng, ZHANG Zuping, ZOU Ligeng. Fast algorithm for incremental construction of concept lattice[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(11):1862-1870.
[5] QIAN Ting, WEI Ling, QI Jianjun. Constructing three-way concept lattices based on apposition and subposition of formal contexts[J]. Knowledge-Based Systems, 2017, 116:39-48.
[6] LIU Guilong. Attribute reduction algorithms determined by invariants for decision tables[J/OL]. Cognitive Computation, 2021[2022-02-23]. https://doi.org/10.1007/s12559-021-09887-w.
[7] ZHANG Wenxiu, WEI Ling, QI Jianjun. Attribute reduction theory and approach to concept lattice[J]. Science in China Series F: Information Science, 2005, 48(6):713-726.
[8] WANG Zhen, WEI Ling, QI Jianjun, et al. Attribute reduction of SE-ISI concept lattices for incomplete contexts[J]. Soft Computing, 2020, 24(20):15143-15158.
[9] 王振, 魏玲. 基于单边区间集概念格的不完备形式背景的属性约简[J]. 计算机科学, 2018, 45(1):73-78. WANG Zhen, WEI Ling. Attribute reduction of partially-known formal concept lattices for incomplete contexts[J]. Computer Science, 2018, 45(1):73-78.
[10] LI Jinhai, MEI Changlin, LV Yuejin. A heuristic knowledge-reduction method for decision formal contexts[J]. Computers and Mathematics with Applications, 2010, 61(4):1096-1106.
[11] LI Jinhai, MEI Changlin, LV Yuejin. Incomplete decision contexts: approximate concept construction, rule acquisition and knowledge reduction[J]. International Journal of Approximate Reasoning, 2013, 54(1):149-165.
[12] 朱治春, 魏玲. 基于类背景的双向规则的获取[J]. 西北大学学报(自然科学版), 2015, 45(4):517-524. ZHU Zhichun, WEI Ling. Two-way rules acquisition based on class contexts[J]. Journal of Northwest University(Natural Science Edition), 2015, 45(4):517-524.
[13] 李金海, 吕跃进. 基于概念格的决策形式背景属性约简及规则提取[J]. 数学的实践与认识, 2009, 39(7):182-188. LI Jinhai, LV Yuejin. Attribute reduction and rules extraction in decision formal context based on concept lattice[J]. Mathematics in Practice and Theory, 2009, 39(7):182-188.
[14] HU Zhiyong, SHAO Mingwen, LIU Huan, et al. Cognitive computing and rule extraction in generalized one-sided formal contexts[J/OL]. Cognitive Computation, 2021[2022-02-23]. https://doi.org/10.1007/s12559-021-09868-z.
[15] MISSAOUI R, GODIN R, BOUJENOUI A. Extracting exact and approximate rules from databases[C] // Proceedings of SOFTEKS Workshop on Incompleteness and Uncertainty in Information Systems. Berlin: Springer, 1993: 209-222.
[16] FREEMAN L C, WHITE D R. Using galois lattices to represent network data[J]. Sociological Methodology, 1993, 23:127-146.
[17] 崔晓婕, 许寒冰, 于微微, 等. 基于形式概念分析法研究针灸治疗肩痹选穴规律[J]. 世界中医药, 2021, 16(19):2941-2945. CUI Xiaojie, XU Hanbing, YU Weiwei, et al. Analysis on acupoint selection rules for treatment of shoulder arthralgia by acupuncture and moxibustion based on formal concept analysis[J]. World Chinese Medicine, 2021, 16(19):2941-2945.
[18] 张瑞玲, 徐红升, 沈夏炯. 基于偏序关系的子概念格判定算法[J]. 计算机应用与软件, 2008, 25(8):6-7, 64. ZHANG Ruiling, XU Hongsheng, SHEN Xiajiong. Determinant algorithm of sub-concept lattice on partial ordering relation basis[J]. Computer Applications and Software, 2008, 25(8):6-7, 64.
[19] 金岳霖. 形式逻辑[M]. 北京: 人民出版社, 1979: 34-41. JIN Yuelin. Formal logic[M]. Beijing: Peoples Publishing House, 1979: 34-41.
[20] 全国科学技术名词审定委员会. 资源科学技术名词[M]. 北京: 科学出版社, 2008: 203-204. China National Committee for Terminology in Science and Technology. Chinese terms in resource science and technology[M]. Beijing: Science Press, 2008: 203-204.
[21] QI Jianjun, WEI Ling, YAO Yiyu. Three-way formal concept analysis[C] // International Conference on Rough Sets and Knowledge Technology. Berlin: Springer, 2014: 732-741.
[1] 常丽娜, 魏玲. 基于OE-近似概念格的不完备决策背景的规则提取[J]. 《山东大学学报(理学版)》, 2021, 56(11): 31-37.
[2] 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82.
[3] 李双伶,岳晓威,秦克云. 多源形式背景中的粒结构[J]. 《山东大学学报(理学版)》, 2020, 55(5): 46-54.
[4] 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12.
[5] 刘营营,米据生,梁美社,李磊军. 三支区间集概念格[J]. 《山东大学学报(理学版)》, 2020, 55(3): 70-80.
[6] 姬儒雅,魏玲,任睿思,赵思雨. 毕达哥拉斯模糊三支概念格[J]. 《山东大学学报(理学版)》, 2020, 55(11): 58-65.
[7] 李粉宁,范敏,李金海. 形式概念分析中面向对象粒概念的动态更新[J]. 《山东大学学报(理学版)》, 2019, 54(4): 105-115.
[8] 李金海,吴伟志,邓硕. 形式概念分析的多粒度标记理论[J]. 《山东大学学报(理学版)》, 2019, 54(2): 30-40.
[9] 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24.
[10] 黄桃林,牛娇娇,李金海. 基于粒辨识属性矩阵的动态形式背景约简更新方法[J]. 山东大学学报(理学版), 2017, 52(7): 13-21.
[11] 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12.
[12] 刘琳,魏玲,钱婷. 决策形式背景中具有置信度的三支规则提取[J]. 山东大学学报(理学版), 2017, 52(2): 101-110.
[13] 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103.
[14] 覃丽珍, 李金海, 王扬扬. 基于概念格的知识发现及其在高校就业数据分析中的应用[J]. 山东大学学报(理学版), 2015, 50(12): 58-64.
[15] 汤亚强, 范敏, 李金海. 三元形式概念分析下的认知系统模型及信息粒转化方法[J]. 山东大学学报(理学版), 2014, 49(08): 102-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .