您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (6): 116-121, 126.doi: 10.6040/j.issn.1671-9352.0.2022.664

•   • 上一篇    下一篇

吸引-排斥趋化流体的连续依赖性

王彦平(),李远飞*()   

  1. 广州华商学院数据科学学院,广东 广州 511300
  • 收稿日期:2022-12-13 出版日期:2024-06-20 发布日期:2024-06-17
  • 通讯作者: 李远飞 E-mail:li20201101@126.com;liqfd@163.com
  • 作者简介:王彦平(1979—),女,讲师,硕士, 研究方向为偏微分方程. E-mail: li20201101@126.com
  • 基金资助:
    广东省普通高校创新团队项目(2020WCXTD008);广东华商学院导师制项目

Continuous dependence of attractive-repulsive chemotactic systems

Yanping WANG(),Yuanfei LI*()   

  1. School of Data Science, Guangzhou Huashang College, Guangzhou 511300, Guangdong, China
  • Received:2022-12-13 Online:2024-06-20 Published:2024-06-17
  • Contact: Yuanfei LI E-mail:li20201101@126.com;liqfd@163.com

摘要:

考虑模拟阿尔茨海默(Alzheimer)病早期斑块形成的趋化系统,其模型定义在一个具有光滑边界的有界凸区域。假设系统的初始值满足一定的约束条件,推导解的先验估计。利用这些先验估计,证明趋化系统的解的连续依赖于方程中的参数。结果表明,方程中的参数的微小变化不会对系统造成巨大影响。

关键词: 趋化系统, 连续依赖性, 先验界

Abstract:

The chemotaxis system simulating the early plaque formation of Alzheimer's disease is considered, which is defined in a truncated convex region with smooth boundary. Assuming that the initial value of the system satisfies certain constraints, a priori estimates of the solutions is derived. Using these a prior estimates, it is proved that the solutions of the chemotaxis system are continuously dependent on the parameter in the equation. The result shows that small changes of the parameters in the equation will not cause great impact to the system.

Key words: chemotaxis system, continuous dependence, a priori bounds

中图分类号: 

  • O175.29
1 LUCA M , CHAVEZ-ROSS A , EDELSTEIN-KESHET L , et al. Chemotactic signaling, microglia, and Alzheimer's disease senile plaques: is there a connection?[J]. Bulletin of Mathematical Biology, 2003, 65 (4): 693- 730.
doi: 10.1016/S0092-8240(03)00030-2
2 TAO Youshan , WANG Zhian . Competing effects of attraction vs. repulsion in chemotaxis[J]. Mathematical Models and Methods in Applied Sciences, 2013, 23 (1): 1- 36.
doi: 10.1142/S0218202512500443
3 JIN Haiyang , WANG Zhian . Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model[J]. Mathematical Methods in the Applied Sciences, 2015, 38 (3): 444- 457.
doi: 10.1002/mma.3080
4 LIU Jia , WANG Zhian . Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension[J]. Journal of Biological Dynamics, 2012, 6 (Suppl 1): 31- 41.
5 LIU Dongmei , TAO Youshan . Global boundedness in a fully parabolic attraction-repulsion chemotaxis model[J]. Mathematical Methods in the Applied Sciences, 2015, 38 (12): 2537- 2546.
doi: 10.1002/mma.3240
6 JIN Haiyang . Boundedness of the attraction-repulsion Keller-Segel system[J]. Journal of Mathematical Analysis and Applications, 2015, 422 (2): 1463- 1478.
doi: 10.1016/j.jmaa.2014.09.049
7 LIN Ke , MU Chunlai , WANG Liangchen . Large-time behavior of an attraction-repulsion chemotaxis system[J]. Journal of Mathematical Analysis and Applications, 2015, 426 (1): 105- 124.
doi: 10.1016/j.jmaa.2014.12.052
8 HIRSCH M W , SMALE S . Differential equations, dynamical systems and linear algebra[M]. New York: Academic Press, 1974.
9 LI Yuanfei , CHEN Xuejiao , SHI Jincheng . Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a darcy fluid[J]. Applied Mathematics & Optimization, 2021, 84 (1): 979- 999.
10 LIN C H , PAYNE L E . Continuous dependence on the Soret coefficient for double diffusive convection in Darcy flow[J]. Journal of Mathematical Analysis and Applications, 2008, 342 (1): 311- 325.
doi: 10.1016/j.jmaa.2007.11.036
11 李远飞, 肖胜中, 郭连红. 存在饱和蒸汽的大气原始方程组解对边界参数的收敛性[J]. 四川师范大学学报(自然科学版), 2021, 44 (5): 644- 653.
LI Yuanfei , XIAO Shengzhong , GUO Lianhong . The convergence of the primitive equations of the atmosphere in presence of vapour saturation on the boundary parameters[J]. Journal of Sichuan Normal University (Natural Science), 2021, 44 (5): 644- 653.
12 石金诚, 李远飞. 多孔介质中的Darcy方程组解的结构稳定性[J]. 浙江大学学报(理学版), 2021, 48 (3): 298- 303.
SHI Jincheng , LI Yuanfei . Structural stability of solutions for the Darcy equations in porous medium[J]. Journal of Zhejiang University (Science Edition), 2021, 48 (3): 298- 303.
13 李远飞, 郭战伟. Brinkman-Forchheimer流体与Darcy流体界面连接共振渗透[J]. 应用数学学报, 2021, 44 (2): 226- 237.
LI Yuanfei , GUO Zhanwei . Structural stability of a resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a darcy fluid[J]. Acta Mathematicae Applicatae Sinica, 2021, 44 (2): 226- 237.
14 LI Yuanfei , LIN Changhao . Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe[J]. Applied Mathematics and Computation, 2014, 244, 201- 208.
15 PAYNE L E , SONG J C , STRAUGHAN B . Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity[J]. Proceedings of the Royal Society, 1999, 455, 2173- 2190.
16 GENTILE M , STRAUGHAN B . Structural stability in resonant penetrative convection in a Forchheimer porous material[J]. Nonlinear Analysis: Real World Applications, 2013, 14 (1): 397- 401.
[1] 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83, 91.
[2] 欧阳柏平,李远飞. 多孔介质中的一类流体方程组的连续依赖性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 103-110.
[3] 李远飞. 原始方程组对黏性系数的连续依赖性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 12-23.
[4] 席进华. 四阶两点常微分方程边值问题解的存在性[J]. J4, 2009, 44(1): 67-73 .
[5] 肖 华 . 多维反射倒向随机微分方程的解对参数的连续依赖性[J]. J4, 2007, 42(2): 68-71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 金黎明,杨 艳*,刘万顺,韩宝芹,田文杰,范圣第 . 壳寡糖及其衍生物对CCl4诱导的小鼠肝损伤的保护作用[J]. J4, 2007, 42(7): 1 -04 .
[2] 章东青,殷晓斌,高汉鹏. Quasi-线性Armendariz模[J]. 山东大学学报(理学版), 2016, 51(12): 1 -6 .
[3] 李守巨1,上官子昌2,3,孙伟4,栾茂田1,刘博3. 盾构机密封舱渣土非线性本构模型参数识别[J]. J4, 2010, 45(7): 24 -27 .
[4] 袁彦莉 张兴芳. Gödel逻辑系统中公式条件概率真度的研究[J]. J4, 2009, 44(9): 70 -74 .
[5] 李亚男1,刘磊坡2,王玉光3. 非线性时滞输入系统的滑模控制[J]. J4, 2010, 45(6): 99 -104 .
[6] 张苏梅,马巧灵,赵海霞. 路与圈的积图的(d,1)全标号[J]. J4, 2009, 44(4): 37 -42 .
[7] 苏 祺,项 锟,孙 斌 . 基于链接聚类的Shark-Search算法[J]. J4, 2006, 41(3): 1 -04 .
[8] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[9] 张明明,秦永彬. 基于前序关系的非确定型有穷自动机极小化算法[J]. J4, 2010, 45(7): 34 -38 .
[10] 邵国俊,茹淼焱*,孙雪莹. 聚醚接枝聚羧酸系减水剂合成工艺研究[J]. J4, 2013, 48(05): 29 -33 .