《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (1): 74-82.doi: 10.6040/j.issn.1671-9352.4.2023.0215
• • 上一篇
国栋凯1,张钦然1,李小南2,易黄建1*
GUO Dongkai1, ZHANG Qinran1, LI Xiaonan2, YI Huangjian1*
摘要: 提出一种基于五区域阴影集的模糊C均值(fuzzy C-means, FCM)算法,利用FCM算法得到对象簇的隶属度,引入五区域阴影集,将对象划分为核心区域、次核心区域、阴影区域、次边缘区域和边缘区域,分析次核心区域得到阈值ω,通过核心区域和次核心区域中隶属度μ≥ω的对象簇得到聚类结果,在8个公开数据集中进行实验。本文提出的算法相比于其余3种算法在7个数据集上取得了最佳的聚类结果。
中图分类号:
[1] VERMA H, VERMA D, TIWARI P K. A population based hybrid FCM-PSO algorithm for clustering analysis and segmentation of brain image[J]. Expert Systems with Applications, 2021, 167:114121. [2] RUSOPINI E H, BEZDEK J C, KELLER J M. Fuzzy clustering: a historical perspective[J]. IEEE Computational Intelligence Magazine, 2019, 14(1):45-55. [3] ALMOMANY A, JARRAH A, Al ASSAF A. FCM clustering approach optimization using parallel high-speed intel FPGA technology[J]. Journal of Electrical and Computer Engineering, 2022, 2022. [4] SUGANYA R, SHANTHI R. Fuzzy C-means algorithm:a review[J]. International Journal of Scientific and Research Publications, 2012, 2(11):1-5. [5] JIANG Chunmao, LI Zhicong, YAO Jingtao. A shadowed set-based three-way clustering ensemble approach[J]. International Journal of Machine Learning and Cybernetics, 2022, 13(9):2545-2558. [6] 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 山东大学学报(理学版), 2023, 58(1):59-66. FAN Jiachen, WANG Pingxin, YANG Xibei. Density-sensitive spectral clustering based on three-way decision[J]. Journal of Shandong University(Natural Science), 2023, 58(1):59-66. [7] 王君宇,杨亚锋,薛静轩,等. 可拓序贯三支决策模型及应用[J]. 山东大学学报(理学版), 2023, 58(7):67-79. WANG Junyu, YANG Yafeng, XUE Jingxuan, et al. Extension sequential three-way decision model and its application[J].Journal of Shandong University(Natural Science), 2023, 58(7):67-79. [8] BEZDEK J C. Cluster validity with fuzzy sets[J]. Journal of Cybernetics, 1973, 3(3):58-73 [9] FAN Jiulun, ZHEN Wenzhi, XIE Weixin. Suppressed fuzzy C-means clustering algorithm[J]. Pattern Recognition Letters, 2003, 24(9/10):1607-1612. [10] LIN P L, HUANG P W, KUO C H, et al. A size-insensitive integrity-based fuzzy C-means method for data clustering[J]. Pattern Recognition, 2014, 47(5):2042-2056. [11] ZHOU Jie, ZHI Huilai, GAO Can, et al. Rough possibilistic C-means clustering based on multigranulation approximation regions and shadowed sets[J]. Knowledge-based Systems, 2018, 160:144-166. [12] PEDRYEZ W. Shadowed sets: representing and processing fuzzy sets[J]. IEEE Transactions on Systems, Man, and Cybernetics(Part B: Cybernetics), 1998, 28(1):103-109. [13] 姜春茂,赵书宝. 基于阴影集的多粒度三支聚类集成[J]. 电子学报, 2021, 49(8):1524-1532. JIANG Chunmao, ZHAO Shubao. Multi-granulation three-way clustering ensemble based on shadowed sets[J]. Acta Electronica Sinica, 2021, 49(8):1524-1532. [14] IBRAHIM M A, WILLIAN-WEST T O, KANA A F D, et al. Shadowed sets with higher approximation regions[J]. Soft Computing, 2020, 24(22):17009-17033. [15] PEDRYEZ W, VUKOVICH G. Granular computing with shadowed sets[J]. International Journal of Intelligent Systems, 2002, 17(2):173-197. [16] TAHAYORI H, SADEGHIAN A, PEDRYCZ W. Induction of shadowed sets based on the gradual grade of fuzziness[J]. IEEE Transactions on Fuzzy Systems, 2013, 21(5):937-949. [17] IBRAHIM A M, WILLIAM-WEST T O. Induction of shadowed sets from fuzzy sets[J]. Granular Computing, 2019, 4(1):27-38. [18] ZHANG Yan, YAO Jingtao. Game theoretic approach to shadowed sets: a three-way tradeoff perspective[J]. Information Sciences, 2020, 507:540-552. [19] YAO Yiyu. Three-way decision and granular computing[J]. International Journal of Approximate Reasoning, 2018, 103:107-123. [20] LI Xiaonan, WANG Xuan, LANG Guangming, et al. Conflict analysis based on three-way decision for triangular fuzzy information systems[J]. International Journal of Approximate Reasoning, 2021, 132:88-106. [21] LI Xiaonan, WANG Xuan, SUN Bingzhen, et al. Three-way decision on information tables[J]. Information Sciences, 2021, 545:25-43. |
[1] | 范敏,秦琴,李金海. 基于三支因果力的邻域推荐算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 12-22. |
[2] | 朱金,付玉,管文瑞,王平心. 基于自然最近邻的样本扰动三支聚类[J]. 《山东大学学报(理学版)》, 2024, 59(5): 45-51. |
[3] | 方逢祺,吴伟志. 决策集值系统中的知识约简[J]. 《山东大学学报(理学版)》, 2024, 59(5): 82-89. |
[4] | 郑晨颖,陈颖悦,侯贤宇,江连吉,廖亮. 一种邻域粒的模糊C均值聚类算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 35-44. |
[5] | 孙嘉睿,杜明晶. 模糊边界剥离聚类[J]. 《山东大学学报(理学版)》, 2024, 59(3): 27-36, 50. |
[6] | 王茜,张贤勇. 不完备邻域加权多粒度决策理论粗糙集及三支决策[J]. 《山东大学学报(理学版)》, 2023, 58(9): 94-104. |
[7] | 王君宇,杨亚锋,薛静轩,李丽红. 可拓序贯三支决策模型及应用[J]. 《山东大学学报(理学版)》, 2023, 58(7): 67-79. |
[8] | 胡成祥,张莉,黄晓玲,王汇彬. 面向属性变化的动态邻域粗糙集知识更新方法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 37-51. |
[9] | 方宇,郑胡宇,曹雪梅. 三支过采样的不平衡数据分类方法[J]. 《山东大学学报(理学版)》, 2023, 58(12): 41-51. |
[10] | 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 《山东大学学报(理学版)》, 2023, 58(1): 59-66. |
[11] | 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 《山东大学学报(理学版)》, 2022, 57(9): 33-45. |
[12] | 巩增泰,他广朋. 直觉模糊集所诱导的软集语义及其三支决策[J]. 《山东大学学报(理学版)》, 2022, 57(8): 68-76. |
[13] | 施极,索中英. 基于区间数层次分析法的损失函数确定方法[J]. 《山东大学学报(理学版)》, 2022, 57(5): 28-37. |
[14] | 杨洁,罗天,李阳军. 基于TOPSIS的无标签序贯三支决策模型[J]. 《山东大学学报(理学版)》, 2022, 57(3): 41-48. |
[15] | 李敏,杨亚锋,雷宇,李丽红. 基于可拓域变化代价最小的最优粒度选择[J]. 《山东大学学报(理学版)》, 2021, 56(2): 17-27. |
|