您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (1): 74-82.doi: 10.6040/j.issn.1671-9352.4.2023.0215

• • 上一篇    

基于新型阴影集的模糊C均值聚类算法

国栋凯1,张钦然1,李小南2,易黄建1*   

  1. 1.西北大学信息科学与技术学院, 陕西 西安 710127;2.西安电子科技大学数学与统计学院, 陕西 西安 710126
  • 发布日期:2025-01-10
  • 通讯作者: 易黄建(1985— ),女,副教授,博士,研究方向为光学图像三维重建、三支决策模型与应用、智能信息处理.E-mail: yhj2014@nwu.edu.cn
  • 作者简介:国栋凯(1996— ),男,硕士研究生,研究方向为三支决策、阴影集、模糊聚类分析等. E-mail: 1159044933@qq.com*通信作者:易黄建(1985— ),女,副教授,博士,研究方向为光学图像三维重建、三支决策模型与应用、智能信息处理.E-mail: yhj2014@nwu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61906154);陕西省教育厅青年创新团队资助项目(21JP123)

Fuzzy C-means clustering algorithm based on new shadowed sets

GUO Dongkai1, ZHANG Qinran1, LI Xiaonan2, YI Huangjian1*   

  1. 1. School of Information Science and Technology, Northwest University, Xian 710127, Shaanxi, China;
    2. School of Mathematics and Statistics, Xidian University, Xian 710126, Shaanxi, China
  • Published:2025-01-10

摘要: 提出一种基于五区域阴影集的模糊C均值(fuzzy C-means, FCM)算法,利用FCM算法得到对象簇的隶属度,引入五区域阴影集,将对象划分为核心区域、次核心区域、阴影区域、次边缘区域和边缘区域,分析次核心区域得到阈值ω,通过核心区域和次核心区域中隶属度μ≥ω的对象簇得到聚类结果,在8个公开数据集中进行实验。本文提出的算法相比于其余3种算法在7个数据集上取得了最佳的聚类结果。

关键词: 三支决策, 模糊聚类, 三支聚类, 五区域阴影集

Abstract: A fuzzy C-means(fuzzy C-means, FCM)clustering algorithm based on five-region shadowed sets is proposed in this paper. The membership degree of the object to the cluster is obtained by the FCM algorithm. The object is divided into core region, semi-core region, shadow region, semi-negative region and negative region according to the membership degree by introducing the five-region shadowed sets. Then, a threshold value ω is obtained by analyzing the semi-core region. The objects whose membership degree μ≥ω in the core region and semi-core region are classified into this cluster to get the final clustering result. Experiments are carried out on 8 public data sets with other 3 clustering algorithms, compared with the other 3 algorithms, the algorithm proposed in this paper achieves the best clustering results on 7 data sets. The experimental results show that the proposed algorithm in this paper is superior to 3 other algorithms.

Key words: three-way decision, fuzzy clustering, three-way clustering, five-region shadowed sets

中图分类号: 

  • TP301.6
[1] VERMA H, VERMA D, TIWARI P K. A population based hybrid FCM-PSO algorithm for clustering analysis and segmentation of brain image[J]. Expert Systems with Applications, 2021, 167:114121.
[2] RUSOPINI E H, BEZDEK J C, KELLER J M. Fuzzy clustering: a historical perspective[J]. IEEE Computational Intelligence Magazine, 2019, 14(1):45-55.
[3] ALMOMANY A, JARRAH A, Al ASSAF A. FCM clustering approach optimization using parallel high-speed intel FPGA technology[J]. Journal of Electrical and Computer Engineering, 2022, 2022.
[4] SUGANYA R, SHANTHI R. Fuzzy C-means algorithm:a review[J]. International Journal of Scientific and Research Publications, 2012, 2(11):1-5.
[5] JIANG Chunmao, LI Zhicong, YAO Jingtao. A shadowed set-based three-way clustering ensemble approach[J]. International Journal of Machine Learning and Cybernetics, 2022, 13(9):2545-2558.
[6] 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 山东大学学报(理学版), 2023, 58(1):59-66. FAN Jiachen, WANG Pingxin, YANG Xibei. Density-sensitive spectral clustering based on three-way decision[J]. Journal of Shandong University(Natural Science), 2023, 58(1):59-66.
[7] 王君宇,杨亚锋,薛静轩,等. 可拓序贯三支决策模型及应用[J]. 山东大学学报(理学版), 2023, 58(7):67-79. WANG Junyu, YANG Yafeng, XUE Jingxuan, et al. Extension sequential three-way decision model and its application[J].Journal of Shandong University(Natural Science), 2023, 58(7):67-79.
[8] BEZDEK J C. Cluster validity with fuzzy sets[J]. Journal of Cybernetics, 1973, 3(3):58-73
[9] FAN Jiulun, ZHEN Wenzhi, XIE Weixin. Suppressed fuzzy C-means clustering algorithm[J]. Pattern Recognition Letters, 2003, 24(9/10):1607-1612.
[10] LIN P L, HUANG P W, KUO C H, et al. A size-insensitive integrity-based fuzzy C-means method for data clustering[J]. Pattern Recognition, 2014, 47(5):2042-2056.
[11] ZHOU Jie, ZHI Huilai, GAO Can, et al. Rough possibilistic C-means clustering based on multigranulation approximation regions and shadowed sets[J]. Knowledge-based Systems, 2018, 160:144-166.
[12] PEDRYEZ W. Shadowed sets: representing and processing fuzzy sets[J]. IEEE Transactions on Systems, Man, and Cybernetics(Part B: Cybernetics), 1998, 28(1):103-109.
[13] 姜春茂,赵书宝. 基于阴影集的多粒度三支聚类集成[J]. 电子学报, 2021, 49(8):1524-1532. JIANG Chunmao, ZHAO Shubao. Multi-granulation three-way clustering ensemble based on shadowed sets[J]. Acta Electronica Sinica, 2021, 49(8):1524-1532.
[14] IBRAHIM M A, WILLIAN-WEST T O, KANA A F D, et al. Shadowed sets with higher approximation regions[J]. Soft Computing, 2020, 24(22):17009-17033.
[15] PEDRYEZ W, VUKOVICH G. Granular computing with shadowed sets[J]. International Journal of Intelligent Systems, 2002, 17(2):173-197.
[16] TAHAYORI H, SADEGHIAN A, PEDRYCZ W. Induction of shadowed sets based on the gradual grade of fuzziness[J]. IEEE Transactions on Fuzzy Systems, 2013, 21(5):937-949.
[17] IBRAHIM A M, WILLIAM-WEST T O. Induction of shadowed sets from fuzzy sets[J]. Granular Computing, 2019, 4(1):27-38.
[18] ZHANG Yan, YAO Jingtao. Game theoretic approach to shadowed sets: a three-way tradeoff perspective[J]. Information Sciences, 2020, 507:540-552.
[19] YAO Yiyu. Three-way decision and granular computing[J]. International Journal of Approximate Reasoning, 2018, 103:107-123.
[20] LI Xiaonan, WANG Xuan, LANG Guangming, et al. Conflict analysis based on three-way decision for triangular fuzzy information systems[J]. International Journal of Approximate Reasoning, 2021, 132:88-106.
[21] LI Xiaonan, WANG Xuan, SUN Bingzhen, et al. Three-way decision on information tables[J]. Information Sciences, 2021, 545:25-43.
[1] 范敏,秦琴,李金海. 基于三支因果力的邻域推荐算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 12-22.
[2] 朱金,付玉,管文瑞,王平心. 基于自然最近邻的样本扰动三支聚类[J]. 《山东大学学报(理学版)》, 2024, 59(5): 45-51.
[3] 方逢祺,吴伟志. 决策集值系统中的知识约简[J]. 《山东大学学报(理学版)》, 2024, 59(5): 82-89.
[4] 郑晨颖,陈颖悦,侯贤宇,江连吉,廖亮. 一种邻域粒的模糊C均值聚类算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 35-44.
[5] 孙嘉睿,杜明晶. 模糊边界剥离聚类[J]. 《山东大学学报(理学版)》, 2024, 59(3): 27-36, 50.
[6] 王茜,张贤勇. 不完备邻域加权多粒度决策理论粗糙集及三支决策[J]. 《山东大学学报(理学版)》, 2023, 58(9): 94-104.
[7] 王君宇,杨亚锋,薛静轩,李丽红. 可拓序贯三支决策模型及应用[J]. 《山东大学学报(理学版)》, 2023, 58(7): 67-79.
[8] 胡成祥,张莉,黄晓玲,王汇彬. 面向属性变化的动态邻域粗糙集知识更新方法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 37-51.
[9] 方宇,郑胡宇,曹雪梅. 三支过采样的不平衡数据分类方法[J]. 《山东大学学报(理学版)》, 2023, 58(12): 41-51.
[10] 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 《山东大学学报(理学版)》, 2023, 58(1): 59-66.
[11] 钱进,汤大伟,洪承鑫. 多粒度层次序贯三支决策模型研究[J]. 《山东大学学报(理学版)》, 2022, 57(9): 33-45.
[12] 巩增泰,他广朋. 直觉模糊集所诱导的软集语义及其三支决策[J]. 《山东大学学报(理学版)》, 2022, 57(8): 68-76.
[13] 施极,索中英. 基于区间数层次分析法的损失函数确定方法[J]. 《山东大学学报(理学版)》, 2022, 57(5): 28-37.
[14] 杨洁,罗天,李阳军. 基于TOPSIS的无标签序贯三支决策模型[J]. 《山东大学学报(理学版)》, 2022, 57(3): 41-48.
[15] 李敏,杨亚锋,雷宇,李丽红. 基于可拓域变化代价最小的最优粒度选择[J]. 《山东大学学报(理学版)》, 2021, 56(2): 17-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!