您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 59-64.doi: 10.6040/j.issn.1671-9352.0.2023.246

• • 上一篇    

关于加法幂等元半环簇V(S(a2b))

吴亚楠   

  1. 西北大学数学学院, 陕西 西安 710069
  • 发布日期:2025-11-11
  • 作者简介:吴亚楠(1993— ),女,博士研究生,研究方向为代数学. E-mail:wuyanan@stumail.nwu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11971383)

The additively idempotent semiring variety V(S(a2b))

WU Yanan   

  1. School of Mathematics, Northwest University, Xian 710069, Shaanxi, China
  • Published:2025-11-11

摘要: 研究由S(a2b)生成的簇V(S(a2b)),刻画V(S(a2b))的子簇格L(V(S(a2b))),证明V(S(a2b))的每一个子簇都是有限基底和V(S(a2b))是遗传有限基底。

关键词: ai-半环, 平坦半环, 子簇格, 有限基底

Abstract: The variety V(S(a2b)) generated by S(a2b) is studied, and the lattice L(V(S(a2b)))of subvarieties of V(S(a2b)) is depicted. Also, each member of this lattice is finitely based and V(S(a2b)) is hereditarily finitely based are proved.

Key words: ai-semiring, flat semiring, the lattice of subvarieties, finitely based

中图分类号: 

  • O153.5
[1] BURRIS S, SANKAPPANAVAR H P. A course in universal algebra[M]. New York: Springer, 1981.
[2] GHOSH S, PASTIJN F, ZHAO X Z. Varieties generated by ordered bands I[J]. Order, 2005, 22:109-128.
[3] PASTIJN F. Varieties generated by ordered bands II[J]. Order, 2005, 22:129-143.
[4] PASTIJN F, ZHAO X Z. Varieties of idempotent semirings with commutative addition[J]. Algebra Universalis, 2005, 54:301-321.
[5] REN Miaomiao, ZHAO Xianzhong. The varieties of semilattice-ordered semigroups satisfying x3≈x and xy≈yx[J]. Periodica Mathematica Hungarica, 2016, 72:158-170.
[6] REN Miaomiao, ZHAO Xianzhong, WANG Aifa. On the varieties of ai-semirings satisfying x3≈x[J]. Algebra Universalis, 2017, 77(4):395-408.
[7] SHAO Yong, REN Miaomiao. On the varieties generated by ai-semirings of order two[J]. Semigroup Forum, 2015, 91:171-184.
[8] ZHAO X Z, GUO Y Q, SHUM K P. D -subvarieties of the variety of idempotent semirings[J]. Algebra Colloquium, 2002, 9(1):15-28.
[9] ZHAO X Z, SHUM K P, GUO Y Q. L -subvarieties of the variety of idempotent semirings[J]. Algebra Universalis, 2001, 46:75-96.
[10] JACKSON M. Flat algebras and the translation of universal Horn logic to equational logic[J]. Journal of Symbolic Logic, 2008, 73:90-128.
[11] JACKSON M, REN M M, ZHAO X Z. Nonfinitely based ai-semirings with finitely based semigroup reducts[J]. Journal of Algebra, 2022, 611:211-245.
[12] REN M M, JACKSON M, ZHAO X Z, et al. Flat extensions of groups and limit varieties of additively idempotent semirings[J]. Journal of Algebra, 2023, 623:64-85.
[13] WU Yanan, ZHAO Xianzhong, REN Miaomiao. On varieties of flat nil-semirings[J]. Semigroup Forum, 2023, 106:271-284.
[1] 田径,龚家豪. 单缀严格语言的组合性质及代数特征[J]. 《山东大学学报(理学版)》, 2024, 59(6): 91-97, 107.
[2] 曹发生. Tarski代数和模态代数的主同余[J]. 《山东大学学报(理学版)》, 2020, 55(10): 20-23.
[3] 周楠,张涛,鹿道伟. Monoidal Hom-双代数上的L-R-smash积[J]. 山东大学学报(理学版), 2017, 52(2): 5-8.
[4] 王伟. Unified积和smash余积的Hopf代数结构[J]. 山东大学学报(理学版), 2017, 52(2): 9-13.
[5] 游弥漫, 赵晓凡. Monoidal Hom-Hopf代数上的对角交叉积[J]. 山东大学学报(理学版), 2015, 50(12): 76-80.
[6] 鹿道伟, 张晓辉. G-余分次乘子Hopf代数的Ore扩张[J]. 山东大学学报(理学版), 2015, 50(10): 52-58.
[7] 赵晓凡, 张晓辉. MonoidalHom-双代数上的广义Hom-smash积[J]. 山东大学学报(理学版), 2015, 50(10): 59-63.
[8] 邢建民 . 环同态上的co-*n-模[J]. J4, 2008, 43(8): 28-30 .
[9] 张涛. Yetter-Drinfeld拟余模范畴上的Hopf拟余模[J]. 《山东大学学报(理学版)》, 2020, 55(4): 58-66.
[10] 张倩,李萱,李歆,郑慧慧,李林涵,张良云. 由Sweedler四维Hopf代数构造Rota-Baxter代数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 47-52.
[11] 曹发生,肖方. 模态代数的主同余[J]. 《山东大学学报(理学版)》, 2020, 55(2): 104-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!