JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (4): 86-90.doi: 10.6040/j.issn.1671-9352.0.2017.652
Previous Articles Next Articles
ZHANG Wei-wei*, CAI Jian-sheng
CLC Number:
[1] ERDOS P, RENYI A. On the existence of a factor of degree one in a connected random graph[J]. Acta Math Acad Sci. Hungar. 1996, 17: 359-368. [2] KRIVELEVICH M. Triangle factors in random graphs[J]. Combinatorics, Probability and Computing, 1997, 6:337-347. [3] AION N, YUSTER R. Threshold functions for H-factors[J]. Combinatorics, Probability and Computing, 1993, 2:137-144. [4] RUCINSKI A. Matching and covering the vertices of a random graph by copies of a given graph[J]. Discrete Math, 1992, 106:185-197. [5] AION N, SPENCER J H. The probabilistic method[M]. New York: Wiley, 1992: 303-335. [6] JANSON S, LUCZAK T, RUCINSKI A. An exponential bound for the probability of nonexistence of a specified subgraph in a random graph[J]. Random Graphs, 1990, 87:73-87. [7] 蔡建生, 闫桂英. 随机图中[k, k+1] -因子的存在性[J]. 应用数学学报, 2017, 40(1):144-148. CAI Jiansheng, YAN Guiying. On the existence of[k, k+1] -factors in random graphs[J]. Acta Mathematicae Applicatae Sinica, 2017, 40(1):144-148. [8] CAI J S, WANG X Y, YAN G Y. A note on the existence of fractional f-factors in random graphs[J]. Acta Mathematicae Applicatae Sinica, English Series, 2014, 30(3):677-680. [9] YAN Y Z, WANG H X, WANG J, et al. H(n)-factors in random graphs[J]. Statistics & Probability Letters, 2008, 78(11):1255-1258. |
[1] | LIU Xin-sheng, WEI Zi-ying. An upper bound for the adjacent vertex-distinguishing star chromatic number of graphs [J]. J4, 2012, 47(2): 52-55. |
|