JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (2): 92-97.doi: 10.6040/j.issn.1671-9352.0.2021.099

Previous Articles    

Ideal hereditary irresolvable spaces

LU Shi-zhan1, LIU Yuan-yuan2, CHENG Long-sheng1*   

  1. 1. School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China;
    2. Zhengzhou Health Vocational College, Zhengzhou 450000, Henan, China
  • Published:2022-01-07

Abstract: Some space properties of the ideal hereditary irresolvable space are researched. It is proved that an ideal hereditary irresolvable space and an ideal scattered space are equivalent, if they are ideal Alexandroff topological spaces.

Key words: ideal irresolvable, ideal hereditary irresolvable, topological sums, ideal scattered

CLC Number: 

  • O189
[1] LU Ling, JOANNOPOULOS J D, SOLJACIC M. Topological photonics[J]. Nature Photonics, 2014, 8(11):821-829.
[2] KHANIKAEV A B, SHVETS G. Two-dimensional topological photonics[J]. Nature Photonics, 2017, 11(12):763-773.
[3] ZHANG Haidong, SHU Lan, LIAO Shilong. Topological structures of interval-valued hesitant fuzzy rough set and its application[J]. Journal of Intelligent & Fuzzy Systems, 2016, 30(2):1029-1043.
[4] EGENHOFER M J, FRANZOSA R D. Point-set topological spatial relations[J]. International Journal of Geographical Information System, 1991, 5(2):161-174.
[5] RIAZ M, DAVVAZ B, FAKHAR A, et al. Hesitant fuzzy soft topology and its applications to multi-attribute group decision-making[J]. Soft Computing, 2020, 24(21):16269-16289.
[6] BHATTACHARYA S, LIKHACHEV M, KUMAR V. Topological constraints in search-based robot path planning[J]. Auton Robot, 2012, 33(3):273-290.
[7] JANKOVIC D S, HAMLETT T R. New topologies from old via ideals[J]. The American Mathematical Monthly, 1990, 97(4):295-310.
[8] CATALAN G T, PADUA R N, BALDADO Jr. M P. On β-open sets and ideals in topological spaces[J]. European Journal of Pure and Applied Mathematics, 2019, 12(3):893-905.
[9] KOAM A N A, IBEDOU I, ABBAS S E. Fuzzy ideal topological spaces[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36(6):5919-5928.
[10] GANESAN S. Micro ideal generalized closed sets in micro ideal topological spaces[J]. The International Journal of Analytical and Experimental Modal Analysis, 2020, 7(5):1417-1437.
[11] CAI Zhangyong, ZHENG Dingwei, LI Zhaowen, et al. I -separability on ideal topological spaces[J]. Journal of Advanced Research in Pure Mathematics, 2011, 3(4):85-91.
[12] EKICI E. On I -Alexandroff and I g-Alexandroff ideal topological spaces[J]. Filomat, 2011, 25(4):99-108.
[13] MUKHERJEE M N, ROY B, SEN R. On extensions of topological spaces in terms of ideals[J]. Topology and Its Applications, 2007, 154(18):3167-3172.
[14] LI Zhaowen, LU Shizhan. On I -scattered space[J]. Bulletin of the Korean Mathematical Society, 2014, 51(3):667-680.
[15] HEWITT E. A problem of set-theoretic topology[J]. Duke Mathematical Journal, 1943, 10(2):309-333.
[16] PAVLOV O. On resolvability of topological spaces[J]. Topology and Its Applications, 2002, 126(2):37-47.
[17] COMFORT W W, MASAVEU O, ZHOU Hao. Resolvability in topology and in topological groups[J]. Annals of the New York Academy of Sciences, 1995, 767(1):17-27.
[18] LINDNER S. Resolvability properties of similar topologies[J]. Bulletin of the Australian Mathematical Society, 2015, 1(3):1-8.
[19] DONTCHEV J, GANSTER M, ROSE D. Ideal resolvability[J]. Topology and Its Applications, 1999, 93(1):1-16.
[20] WAGNER-BOJAKOWSKA E. Resolvability of I-density topology[J]. Zeszyty Naukowe Wyzsz ej Szkoy Informatyki, 2001, 1(1):35-37.
[21] 高国士. 拓扑空间论[M]. 北京: 科学出版社, 2008: 7-20. GAO Guoshi. Topological space theory[M]. Beijing: Science Press, 2008: 7-20.
[22] HAYASHI E. Topologies defined by local properties[J]. Mathematische Annalen, 1964, 156(3):205-215.
[23] LI Zhaowen, LIN Funing. On I -baire spaces[J]. Filomat, 2013, 27(2):301-310.
[24] HATIR E, KESKIN A, NOIRI T. A note on strong β-I -sets and strongly β-I -continuous functions[J]. Acta Mathematica Hungarica, 2005, 108(1):87-94.
[1] DUAN Jing-yao. Topological properties analysis of logical metric spaces on the residuated lattice [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 9-16.
[2] LIU Yan-fang, WANG Yu-yu. Some notes on E2-term of Adams spectral sequence [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 43-48.
[3] GAO Rui-mei, CHU Ying. Freeness of arrangements between the Weyl arrangements of types An-1 and Bn [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 70-75.
[4] GUO Hong-feng, LI Yu-si, SUN Wei-hua. D-properties of Finite unions of spaces with point countable weak bases and satisfying open(G) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 72-76.
[5] MA Hai-cheng, LI Sheng-gang. The digraphs representation of finite topologies [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 100-104.
[6] . The characteristic polynomials of the graphical arrangements corresponding to the simply-connected polygons [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 72-77.
[7] LU Tao, HE Wei. Neighborhood systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 65-69.
[8] LU Tao, WANG Xi-juan, HE Wei. The supremum and infimum of partially ordered objects in a topos [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 112-117.
[9] ZHANG Guo-fang, YANG Er-guang. Function characterizations of k-semi-stratifiable spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 99-103.
[10] YANG Xiao-fei. Characterization of L-fuzzifying topological spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 114-118.
[11] LU Tao, WANG Xi-juan, HE Wei. The operator theory on complete partially ordered objects in a topos [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 64-71.
[12] LU Tao, WANG Xi-juan, HE Wei. An equivalent characterization of the choice axiom in a Topos [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 54-57.
[13] GAO Rui-mei, SUN Yan. Quadratic Gröbner basis and the isomorphism of Orlik-Solomon algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 89-94.
[14] GAO Rui-mei. The freeness of Shi-Catalan arrangements of type G2 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 66-70.
[15] LU Han-chuan, LI Sheng-gang. Characterization of bicompletable interval-valued fuzzy quasi-metric spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!