JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (2): 19-23.doi: 10.6040/j.issn.1671-9352.0.2023.275
CHEN Xu1, SHAO Rongxia1, WANG Guoping2*
CLC Number:
[1] BOSE S S, NATH M, PAUL S. On the maximal distance spectral radius of graphs without a pendent vertex[J]. Linear Algebra and Its Applications, 2013, 438(11):4260-4278. [2] ALEKSANDAR I. Distance spectral radius of trees with given matching number[J]. Discrete Applied Mathematics, 2010, 158(16):1799-1806. [3] NING W J, OUYANG L Q, LU M. Distance spectral radius of trees with fixed number of pendent vertices[J]. Linear Algebra and Its Applications, 2013, 439(8):2240-2249. [4] AOUCHICHE M, HANSEN P. Distance spectra of graphs: a survey[J]. Linear Algebra and Its Applications, 2014, 458:301-386. [5] FAN Y Z, ZHANG F F, WANG Y. The least eigenvalue of the complements of trees[J]. Linear Algebra and Its Applications, 2011, 435(9):2150-2155. [6] JIANG G, YU G D, SUN W, et al. The least eigenvalue of graphs whose complements have only two pendent vertices[J]. Applied Mathematics and Computation, 2018, 331:112-119. [7] LI S C, WANG S J. The least eigenvalue of the signless Laplacian of the complements of trees[J]. Linear Algebra and Its Applications, 2012, 436(7):2398-2405. [8] YU G D, FAN Y Z, YE M L. The least signless Laplacian eignvalue of the complements of unicyclic graphs[J]. Applied Mathematics and Computation, 2017, 306:13-21. [9] 冯小芸,陈旭,王国平. 仅有三个悬挂点的图的补图的最小特征值[J]. 华中师范大学学报(自然科学版),2021,55(6):1000-1006. FENG Xiaoyun, CHEN Xu, WANG Guoping. The least eigenvalue of the complements of graphs having exactly three pendent vertices[J]. Journal of Huazhong Normal University(Natural Sciences), 2021, 55(6):1000-1006. [10] CHEN X, WANG G P. The distance spectrum of the complements of graphs of diameter greater than three[J]. Indian Journal of Pure and Applied Mathematics, 2023, 54:959-965. [11] LIN H Q, DRURY S. The distance spectrum of complements of trees[J]. Linear Algebra and Its Applications, 2017, 530:185-201. [12] QIN R, LI D, CHEN Y Y, et al. The distance eigenvalues of the complements of unicyclic graphs[J]. Linear Algebra and Its Applications, 2020, 598:49-67. [13] CHEN X, WANG G P. The distance spectrum of the complements of graphs with two pendent vertices[J]. Indian Journal of Pure and Applied Mathematics, 2023, 54:1069-1080. |
[1] | WANG Guo-xin, NIU Yu-jun. Real-valued implicit Lagrangian for the stochastic linear second-order cone complementarity problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 49-54. |
[2] | HAN Pei-lei, WEI Ling, WANG Zhen, ZHAO Si-yu. Complementary concepts and their properties and generation in FCA [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 60-67. |
[3] | WANG Bao-li, WANG tao, LIAN Kan-chao, HAN Su-qing. Research of partition knowledge orthogonal complement for granular space [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(3): 31-40. |
[4] | WU Yi-fan, WANG Guang-fu. Extremal graphs on distance spectral radius of polyomino chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 84-91. |
[5] | LI Xu, YIN Xiao-xia. Picard-GPSS iteration method for solving the generalized absolute value equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(12): 26-32. |
[6] | LIU Hong-jin, LIU Li-min. Complements of partial silting objects in triangulated categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 67-71. |
[7] | XU Yan-chao. Static output feedback robust H∞ control for continuous-time positive systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 87-94. |
[8] | XIONG De-guo, HU Yong-wen. A new method of solving the assignment problem based on the permissible-edge algorithm of minimum cost flow problem [J]. J4, 2012, 47(3): 103-109. |
[9] | CHEN Yue-jiao, ZHANG Ming-wang*. A full-newton step infeasible interior-point algorithm for monotone linear complementarity problems based on a kernel function [J]. J4, 2012, 47(10): 81-88. |
[10] | LEI Xue-ping. Almost complete C-tilting modules [J]. J4, 2011, 46(2): 101-104. |
[11] | WEN Fei1, WANG Zhi-wen2, WANG Hong-jie3, BAO Shi-tang4, LI Mu-chun1*, ZHANG Zhong-fu1. Vertex-distinguishing total coloring of some complement double graphs [J]. J4, 2011, 46(2): 45-50. |
[12] | ZHANG De-yu,ZHAI Wen-guang . [J]. J4, 2006, 41(5): 4-07 . |
|