JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (4): 67-71.doi: 10.6040/j.issn.1671-9352.0.2018.158
Previous Articles Next Articles
LIU Hong-jin1,2, LIU Li-min1
CLC Number:
[1] HAPPEL D, RINGEL C M. Tilted algebras[J]. Trans Amer Math Soc, 1982, 274(2):339-443. [2] KELLER B, VOSSIECK D. Aisles in derived categories[J]. Bull Soc Math Belg: Ser A, 1988, 40(2):239-253. [3] AIHARA T, IYAMA O. Silting mutation in triangulated categories[J]. J Lond Math Soc, 2012, 85(3):633-668. [4] AIHARA T, IYAMA O, REITEN I. τ-tilting theory[J]. Compos Math, 2014, 150(3):415-452. [5] IYAMA O, JORGENSEN P, YANG D. Intermediate co-t-structures, two-term silting objects, τ-tilting modules, and torsion classes[J]. Algebra Number Theory, 2014, 8(10):2413-2431. [6] AIHARA T, MIZUNO Y. Classifying tilting complexes over preprojective algebras of Dynkin type[J]. Algebra Number Theory, 2017, 11(6):1287-1315. [7] BONGARTZ K. Tilted algebras[M] // Proc ICRA Ⅲ(Puebla, 1980), Lecture Notes in Math, vol. 903. New York: Springer, 1981: 26-38. [8] LI Shen, ZHANG Shunhua. Some applications of τ-tilting theory[J/OL].[2015-12-11]. arXiv: 1512.03613v1. https://arxiv.org/pdf/1512.03613.pdf. [9] AIHARA T. Tilting-connected symmetric algebras[J]. Algebra Representation Theory, 2013, 16(3):873-894. [10] BUAN A B. Subcategories of the derived category and cotilting complexes[J]. Colloq Math, 2001, 88(1):1-11. [11] RICKARD J. Morita theory for derived categories[J]. J Lond Math Soc, 1989, 39(2):436-456. [12] HAPPEL D. Triangulated categories in the representation theory of finite-dimensional algebras[M] // London Mathematical Society Lecture Note Series, 119. Cambridge: Cambridge University Press, 1988. |
[1] | LEI Xue-ping. Almost complete C-tilting modules [J]. J4, 2011, 46(2): 101-104. |
|